8. Friday, July 5th. Homeomorphisms (\$18) Metric Spaces (\$20,21) Last Time: Continuous maps. Restriction and correstriction. Homeomorphism continuous bjective function with continuous inverse, Not automatic! Delimition 1: Two Top spaces Kandy are homeomorphic if There is a homeomorphism f: X -> Y. Proposition 2: Let f: X -> Y be a bijective map between Top spaces. Then $f': Y \rightarrow X$ is continuous (=) $f(U) \in Y$ is open for every open $U \leq X$ Proof. HW! Definition 3: f:X ->> Y is open if ((U) = Y is open for every open U=X. Examples 1) f: R -> R, f(x) = ax+5 with a = 0 is continuous (analysis) and bijective with inverse $f': \mathbb{R} \rightarrow \mathbb{R}$, $f'(y) = \frac{y-5}{2}$ also continuous

2) Consider (-1,1) <= R with the induced topology

The map
$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
 where $g(x) = \frac{x}{1+|x|}$ is continuous (analysis), injective and $g(\mathbb{R}) = (-1, 1)$. Hence $g(\mathbb{R} \longrightarrow (-1, 1))$ is continuous and sijective.
The inverse map $h: (-1, 1) \longrightarrow \mathbb{R}$ given by $h(y) = \frac{y}{1-|y|}$ is also continuous (analysis) Hence \mathbb{R} and $(-1, 1)$ are homeomorphic.

3) Let
$$f: \mathbb{R} \longrightarrow \mathbb{R}^2$$
 where $f(t) = (\cos(2\pi t), \sin(2\pi t))$, continuous by analysis
Note that $f|_{[0,1]} : [0,1] \longrightarrow \mathbb{R}^2$ is injective with image $S^1 = \langle (x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1 \rangle$
Hence f gives a bijective continuous map $g: [0,1] \longrightarrow S^1$, $g(t) = (\cos(2\pi t), \sin(2\pi t))$
However we will see that g is not a homeomorphism, because g is not open
In fact Let $U = [0, \frac{1}{4}]$, open in $[0,1]$
 $\eta_{ij} = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} g(U) = \langle (x,y) \in S^1 | x > 0, y > 0 \rangle$ is not open
(To be proved)

Metric Spaces Crucial for \mathbb{R}_{std} : $\mathbb{B}(c, \varepsilon) = \{x \in \mathbb{R} \mid |x-a| < \varepsilon\}$ distance from x to a We have a distance function d(x,y) = |x-y|Definition 4: Let X be a set. A metric (or distance) on X is a function $d: X \times X \longrightarrow [0, \infty)$ such that, $\forall x, y, z \in X$, 1) $d(x,y) = \Im \iff x = y$ (non degeneracy) 2) d(x,y) = d(y,x) (symmetry) 3) $d(x,z) \leq d(x,y) + d(y,z)$ (triangle inequality) A Dair (X, d) where dis a metric on X is called a metric space If (X.d) is a metric space, for each ack and exo we denote Bla. E) = LXEX I dla, x) < E}, The open ball of radius E centered at a. Also denote B(a.e) if d is clear.

Examples

Proposition S. Let
$$(X,d)$$
 be a metric space. Then the collection of open bells
 $B = \langle B(x,e) \mid x \in X, e > 0 \rangle$
Form a basis for a topology on X.
Definition: The topology $T_d = T(B)$ is called the metric topology on X.
Proof: We use Proposition 3.4. The first condition $X = \bigcup B$ is trivial
because for any $x \in X$ we have $x \in B(x, 1)$.
To prove the second condition, we first prove:
[Lemma: Let $B(x,e) \in B$. Then, $\forall y \in B(x,e)$, $\exists \delta > 0$ such that $B(y,\delta) \in B(x,e)$
Proof: Since: $\psi \in B(x,e)$, we know that $E - d(x,y) > 0$
take any S with $0 < S < E - d(x,y)$.
We prove $B(y, \delta) \in B(x, e)$. Let $z \in B(y, \delta)$. Then
 $d(x,z) \le d(x,y) + d(y,z) < d(xy) + \delta < d(x,y) + E - d(x,y) = E$

-

Back to the proposition, let $B(x_1, \varepsilon_1)$ and $B(x_2, \varepsilon_2) \in \mathbb{B}$ Let $y \in B(X_1, \varepsilon_1) \cap B(X_2, \varepsilon_2)$. By the lemma above, $\exists j_1 > such That B(y, \delta_1) \in B(x_1, \varepsilon_1)$ and $\exists j_2 > such That B(y, \delta_2) \in B(x_2, \varepsilon_2)$ Hence, for S=min (S, Sz), we have $B(y, \delta) \subseteq B(y, \delta_1) \cap B(y, \delta_2) \subseteq B(x_1, \varepsilon_1) \cap B(x_2, \varepsilon_2)$ Thus, by Prop. 3.4, TB is a basis for some Topology. Note: Using The local description of T(TB) = Td, we know that Td = { U = X | Y x e U] Ero such That B(x, e) = U }