19. Wednesday, July 19. Connectedness in R Theorem 1. Every open interval (a, b) < R is connected. Proof. Assume for a contradiction (a, b) = U u V is a separation of (a, b) where U, V S (a,b) are open. Since U = & and V + & There are points well, NEV which are ut to because UnV=p. Assume whog u< to. Consider The subset 5 s (a, b) given by $S = \{ s \in (a, b) \mid [v, s] \leq U \}$ Note: $S \neq \phi$ (because us S) and Sadmits an upper bound, because $S \leq (q, b)$. Therefore, Sadmits a supremum = Sup S. <u>Claim</u>. Every xeV with u < x is an upper bound for S. Proof Assume for a contradiction This is not the case i.e. There is some xeV and Some SES with X<S. Then $x \in (M, S) \subseteq [U, S] \subseteq U$, so $x \in U \cap V$, contradiction

Claim 2: 5. = Sup
$$5 \in (a, b)$$

$$\frac{\operatorname{Proof:}[aa < A \leq s_{0}, barce A \leq s_{0}, [s_{0} < b].$$

$$[s_{0} < b]. \quad Since A \in V \quad and \quad A < A, we know that A is an upper bound for S
$$(b_{1} < C|a|m|A). \quad Therefore \quad s_{0} \leq A \cdot B_{0}, \quad A < V \in (a,b), hence \quad s_{0} \leq A \leq b.$$

$$C|a|m|B \cdot E[u, s_{0}] \leq U.$$

In fact, otherwise, there is some $x \in V$ with $A < x < s_{0}$, thence
 $x : 3 \text{ an upper bound for S(by C|a|m|A)}, bit Then $x < s_{0} = s_{0} \neq S$, contradiction.

$$C|a|m|B \cdot S_{0} \neq U.$$

$$\operatorname{Proof:} \quad For \quad a \quad contradiction, if \quad s_{0} \in U, \quad since \quad U \text{ is open, we have } (s_{0} - \varepsilon, s_{0} + \varepsilon) \leq U$$

for some $\varepsilon > 0.$ Then, by claim $3 - \varepsilon$, we have

$$\begin{bmatrix} U_{1} \\ S_{0} + \frac{\varepsilon}{2} \end{bmatrix} \leq U_{1} \quad Therefore \quad S_{0} + \frac{\varepsilon}{2} \in S, \quad which$$

$$\operatorname{Contradicts } Thet \quad S_{1} \text{ is an upper bound.}$$$$$

Also, U<5., So U<50-Ez for some Ez. For E= min hE1, Ez7, we get $(s_0 - \varepsilon, s_0 + \varepsilon) \subseteq V$ and $u < s_0 - \varepsilon$. Hence So- E E V and U< So- E, Lence So- E is an upper bound for S by claim 1. This contradicts so is the smallest one M Corollary Z: IR is connected and so are The intervals (a, b), [a, b), (a, b], $(-\infty, a)$, $(-\infty, a]$, (a, ∞) , $[a, \infty)$, Proof. We know that (-a, a), (a, a) and TR are all homeomorphic to (a, b). For The others, use that if A is connected then any B with A = B = A is also connected. Intermediate Value Theorem. Let f: X -> TR be a continuous map with X connected, and let a, be X with f(a) < f(b). Then, for every r with f(a) < r = f(b), there is some $c \in X$ with f(c) = r.

Proof: Assume there is no ceX with
$$f(e)=r$$
, so $r \not\in f(x)$ Then
 $f(X) = (f(X) \cap (-A, r)) \cup (f(X) \cap (r, \infty))$
gives a separation of $f(X)$, which contradicts the fact that X is connected
and f contributions
Definition. Let X be a top space and let $x, y \in X$. A path in X (row x to y
is a continuous map $g: [0, 1] \longrightarrow X$ with $g(o) = x$. $g(1) = y$.
We say that X is path connected if for any $x, y \in X$. There is a path from x to y.
Theorem 3. If a space X is path connected, then it is connected.
Proof: Assume for a contradiction X is not connected and take a separation $X = U \cup V$
Fix $x \in U$, $y \in V$ then there is a path $g(a, 1] \longrightarrow X$ from x to y. Then $g^{-1}(U), g^{-1}(V)$ separate X:
In fact, these are open in $[0, 1]$ because g is contributes, and

$$[0,1] = y^{-1}(X) = y^{-1}(U \cup V) = y^{-1}(U) \cup y^{-1}(V)$$

$$y^{-1}(U) \cap y^{-1}(V) = y^{-1}(U \cap V) = y^{-1}(\phi) = \phi$$
with $v \in y^{-1}(U)$ and $1 \in y^{-1}(V)$. This contradicts $[0,1]$ connected \Box
Example (The converse is not true) A space can be connected but not poin-connected.
Let $X = \frac{1}{2}(0,0)\frac{1}{2} \cup \frac{1}{2}(T, \sin(\frac{\pi}{2})) + \frac{1}{2} \cup \frac{1}{2} + \frac{1}{2}$
With the induced topology of \mathbb{R}^2
A is connected, because it is the image of the
continuous map $F: (0,1] \longrightarrow \mathbb{R}^2$
 $t \longrightarrow (T, \sin(\frac{\pi}{2}))$
. It is a cluster point of A, so $A = X \le \overline{A} \implies X$ connected.

However. X is not connected.