Math 441

Problem 1. Let X be a set. Assume \mathcal{B} and \mathcal{B}' are bases for respective topologies on X. Prove that $\mathcal{T}(\mathcal{B}')$ is finer than $\mathcal{T}(\mathcal{B})$ if and only if for each $B \in \mathcal{B}$ and each $x \in B$, there exists some $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

Problem 2. Consider on \mathbb{R} the standard topology and the lower limit topology. Use the previous problem to decide which of these topologies is finer or coarser than the other.

Problem 3. Let X be a set with more than one element. Prove that $S = \{X \setminus \{x\} \mid x \in X\}$ is a subbasis for the cofinite topology on X.

Problem 4. Let X and Y be topological spaces with bases \mathcal{B} and \mathcal{C} , respectively. Show that the collection

$$\mathcal{D} = \{ \mathbf{U} \times \mathbf{V} \subseteq \mathbf{X} \times \mathbf{Y} \mid \mathbf{U} \in \mathcal{B}, \mathbf{V} \in \mathcal{C} \}$$

is a basis for the product topology on $X \times Y$. *Hint:* Lemma 13.2 from Munkres.

Problem 5. Endow {0,1} with the discrete topology. Let Λ be a nonempty set. Prove that $\prod_{i \in \Lambda} \{0, 1\}$ (endowed with the product topology) is discrete if and only if Λ is finite.

Problem 6. Give a proof for Theorem 19.3 in Munkres.