Problem 1. Prove that composition of continuous functions is continuous.

Problem 2. Let $f: X \to Y$ be a function between topological spaces. Prove that the following are equivalent

- 1. f is continuous
- 2. $f^{-1}(C) \subseteq X$ is closed for every closed set $C \subseteq Y$.
- 3. If S is a subbasis for the topology of Y, then $f^{-1}(S) \subseteq X$ is open for every $S \in S$.

Problem 3. Let $\{(X_i, \mathcal{T}_i) \mid i \in \Lambda\}$ be a collection of topological spaces and let (X, \mathcal{T}) be a topological space. Prove that a function $f: (X, \mathcal{T}) \rightarrow (\prod_{i \in \Lambda} X_i, \mathcal{T}_{prod})$ is continuous if and only if, for all $j \in \Lambda$, the coordinate function $f_j: (X, \mathcal{T}) \rightarrow (X_j, \mathcal{T}_j)$ is continuous.¹

Problem 4. We say that a function $f: X \to Y$ between topological spaces is *open* if $f(U) \subseteq Y$ is open for every open $U \subseteq X$.

- 1. Assume that \mathcal{B} is a basis for the topology of X. Prove that f is open if and only if $f(B) \subseteq Y$ is open for every $B \in \mathcal{B}$.
- 2. Assume that f is bijective. Prove that f is open if and only if $f^{-1}: Y \to X$ is continuous.

Problem 5. Let $f: X \to Y$ be a continuous function between topological spaces. Let $A \subseteq X$ and $B \subseteq Y$ be subspaces. Prove **two** of the following.

- 1. The induced topology on A is the coarsest topology on A such that the inclusion $\iota_A : A \to X$ is continuous.
- 2. The restriction $f|_A : A \to Y$ is continuous.
- 3. If $f(X) \subseteq B$, then corestriction $f|^B \colon X \to B$ is continuous.

Problem 6. Let $f: X \to Y$ be a function between topological spaces. Assume that $\{U_i \mid i \in \Lambda\}$ is a collection of open sets in X such that $X = \bigcup_{i \in \Lambda} U_i$. Prove that f is continuous if and only if, for all $i \in \Lambda$, the restriction $f|_{U_i}: U_i \to Y$ is continuous.

¹This means that the product topology is better than the box topology from a categorical perspective.