

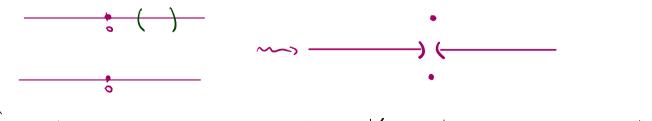
Recall also Their we know how to get maps $X/_{f}$ by using maps $X = \frac{f}{1} Y$. Can even decide when is \tilde{f} injective, surjective, continuous, spon.

Example ([lecture 12) [LeT
$$X = [0,1]$$
. Define an equivalence (elation by
 $X - Y (=) X = Y$ or $X, Y \in \{0,1\}$ The classes for This relation are
 $[0,1]_{n} = \{4x\} \mid x \in \{0,1\}\} \cup \{40,1\}$
Also denoted $[0,1]_{n} = [0,1]_{(0,1]}$
We should: The map $f : [0,1] \longrightarrow S^{*}$, $p(x) = (\cos(x\pi t) \sin(x\pi t))$
induces a continuous bijection
 $\overline{P} : [0,1]_{n} \longrightarrow S^{1}$.
Fact: \overline{P} is open, so it is a honeomorphism !
We could prove This with some work, but instead we will
prove This with little effort when we study compact spaces.
Decall also (from lecture 8) That The same rule
 $g : [0,1] \longrightarrow S^{*}$, $g(t) = (\cos(x\pi t), \sin(x\pi t))$
gives a bijective continuous map

Fact There is no honeomorphism [0,1) -> S1

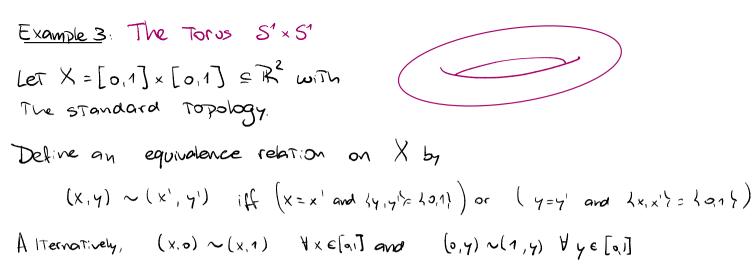
(we sketched an argument for g and will give a rightous map using compact spaces) I'm other words, [0,1]/n is (topologically) different from [0,1]So quotient spaces do not delete points. They really identify points. <u>Example 2</u>: The real line with two origins. Let $X = \mathbb{R} \times \{-1,1\}$ with the induced topology from (\mathbb{R}^2, T_{stal})

Define an equiv. relation on X by $(x, -1) \sim (x, 1)$ for all $x \neq 0$

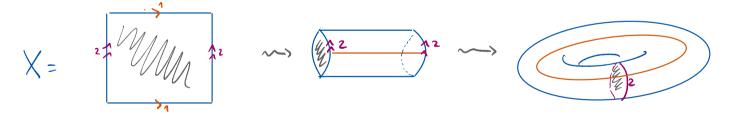


The line with Two origins is Y = X /, where The "two origins" are the classes [(0,-1)] and [(0,1)].

Claim 1. Y is first countrable. Use TI: X -> Y <u>Hint</u>: Show That $\pi((a, b) \times (n)) \subseteq Y$ is open for any interval (a, b) ·If of(a,5), Then $\pi^{-1}(\pi((a, b) \times 41)) = (a, b) \times 4-1, 1$. On the other hand, if o e (a,b), then $\pi^{-1} \left(\pi ((a, b) \times (1)) \right) = (a, b) \times (a, b) - (a, b$ Claim 2: Y is not Hausdorff. We prove that a sequence converges to two points Since $X_n = (\frac{1}{n}, 1)$ - (0,1) in X and TT is continuous, we know That $T(x_n) \longrightarrow T(q_1)$ in Y. Similarly, $\gamma_n = (\frac{1}{n}, -1) \longrightarrow (0, -1)$ in X, so $\overline{\Pi}(\gamma_n) \longrightarrow \overline{\Pi}(0, -1)$ in Y However, $x_n \sim y_n$ $\forall n$, so $\pi(x_n) = \pi(y_n)$ $\forall n$, so this sequence converges to two different points



Here is where pictures become veery useful



Claim: X/~ is homeomorphic To S'×S' Recall from Example 1 we have · A quotient map $q : [0,1] \longrightarrow [0,1]/(0,1)$ A homeomorphism $[0,1]/20,15 \xrightarrow{\overline{f}} S^1$ We Take Two copies of 9 and get a map $h: [0,1] \times [0,1] \longrightarrow [0,1] / \times [0,1] / (0,1)$ $(x,y) \stackrel{h}{\longrightarrow} (q(x),q(y))$ Which is continuous because it is the product of two continuous maps! Fur ther, h descends to the quotient [0,1] × [0,1]/ In fact, since q(0) = q(1), we have h(x, 0) = h(x, 1) and h(0, y) = h(1, y)

 $50 [0,1] \times [0,1] / \approx [0,1] / (0,1) \times [0,1] / (0,1) \approx 5^{1} \times 5^{1}$