4. Wednesday, June 26. Bases and subbases (S13) Let's finish from last Time Proposition 3.4: Let X be a set and let BGP(X). Then T(B) is a Topology on X if and only if: 1) $X = \bigcup_{B \in B} B$, and 2) Y B1, B2 EB and YXE BINB2, J BZEB with XEBZEBINB2 Proof: [=>] Last Time (=] Assume (1) and (2) WTS T(B) is a ropology. We verify axioms (1), (2) and (3) By convention, $p \in T(B)$ and by (1) above $X \in T(B)$. Also, by The first description of TLB) in Lemmaz, T(TB) is automatically closed under arbitrary unious Finally, to prove TIB) closed under finite intersections,

let U.V e TIB), say U= U B; and V= U A; for some B; A; E B WTS UNVE T(TB), Now UNV = UB; nA; We use The second description of T(TB). Given xEUnit, we have xEBinAltor some hil. By (2) above, FB3EB with $x \in B_3 \subseteq B_{hn} A_e \subseteq \bigcup_{ij} B_{i} \cap A_j = \bigcup_{n \in \mathbb{N}} Hence \cup_{n \in \mathbb{N}} \bigcup_{i \in \mathbb{N}} b_i$ Lemmaz. Definition 1: If B=P(X) satisfies 1) and 2), we say that B is a basisfor a Topology By proposition 3.4 it is a basis for the Topology T(B). Note: If B = P(X) Satisfies The condition (2) YB1, B2 ∈ B, either B1 nB2 ∈ B or B1nB2=\$ Then it satisfies condition (2) in Prop 3.4 (for each x EB, nB2, Take B3 = B, nB2 EB) Example: In R we have: 1) Bstd = { (a,b) | a<b } basis for Standard. 2) Be= { [a,b) | a < b } satisfies (1) and (2), hence it is a basis for some topology, called The buer limit Topology.

Subbases

Definition 2. Let (X,T) be a Topological space. Let $5 \in P(X)$. We say that **D** is a subbasis for **T** if **T** = **T**(**B**_s) Where TBS = { U = X | U = V1nV2...n Vn for some V1,..., vn ES } i.e. Open sets are arbitrary unions of finite intersections of sets in \$ Note: A basis for T is also a subbasis for T. Q: Given a set X and SEP(X), When is S a subbasis for some Topology? Proposition 3: Let X be a set and let 5 5 P(X). Then $T(B_s)$ is a Topology if and only if $X = \bigcup_{s \in S} S$ Proof: Exercise, use Proposition 3.4 []

Definition 4: Let X be a set and let
$$5 \leq P(X)$$
.
We say that 5 is a subbasis for a topology if $X = \bigcup_{S \in S} S$.
Example: In R, The collection $S = \{(a, \infty) \mid a \in \mathbb{R}\}$ $\cup \{(-\infty, b) \mid b \in \mathbb{R}\}$ is a
subbasis for The standard topology.
The product and The box topologies $(\{S, IS, IQ\})$
Pecall The Cartesian product of finitely many sets: Given sets X_1, \dots, X_n ,
we define $X_n \times X_2 \times \dots \times X_n = \{(a_n, a_2, \dots, a_n) \mid a_i \in X_i \; \forall i \in \{1, \dots, n\}\}$.
Here clements are toples $a = (a_1, \dots, a_n)$, and a_i is just the value of a at the i-Th entiry
so we can think of a as a function $a_i : \{1, \dots, n\} \rightarrow \bigcup X_i$ such that $a_i : a_i > \bigcup X_i$.
Definition 5: Let $\{X_i \mid i \in A\}$ be a collection of sets. We define their Catteries product as
 $\prod_{i \in A} X_i = \{a_i : A \rightarrow \bigcup X_i \mid a(i) \in X_i : \forall i \in A\}$.

Note that when $\Lambda = \{1, ..., n\}$, we recover $\prod_{i \in \Lambda} X_i = X_1 \times ... \times X_n$ Definition 6: Let {(X:, Ti) lien} be a collection of Topological spaces. The box basis is The collection $\mathbb{B}' = \left\{ \prod_{i \in \Lambda} U_i \in \prod_{i \in \Lambda} X_i \mid U_i \in T_i \; \forall i \in \Lambda \right\}$ Lemma/Depinition 7: B' is a basis for a Topology on II X:, called the box Topology <u>Proof</u>: We will use Proposition 3.4. For condition (1) we need to show that the entire space $TT X_i$ is a union of sets in B'. But since $X_i \in T_i$ vie Λ , we actually have $TT X_i \in B$. For Condition (2), Note that given $TU_i \in B'$ and $TV_i \in B'$, we have

The set equality $(\overline{\Pi} \cup_i) n(\overline{\Pi} \vee_i) = \overline{\Pi} (\bigcup_i n \vee_i)$. Since $\bigcup_i \vee_i \in T_i$ and T_i is a topology, we have $\bigcup_i n \vee_i \in T_i$. Hence $(\overline{\Pi} \cup_i) n(\overline{\Pi} \vee_i) \in \mathbb{B}^{l}$. By Prop. 3.4, $\overline{\Pi}$ follows That $\overline{\mathbb{B}}^{l}$ is a basis for a topology on $\overline{\Pi} \times_i$