\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=1cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem} \setlist{itemsep=0.5em} \usepackage{xcolor} \definecolor{forestgreen}{rgb}{0.13, 0.55, 0.13} \usepackage[colorlinks = true, linkcolor = forestgreen, urlcolor = forestgreen, citecolor = forestgreen, anchorcolor = forestgreen]{hyperref} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{tikz} \usepackage{mathabx} %\usepackage{lastpage} %% header, footer definitions \def\course{MATH 314} \def\courselink{https://www.gsanmarco.com/graph-theory} \def\assignment{HW \#3} \def\assignlink{hw03.tex} \def\due{Due on Feb 7} \pagestyle{fancy} \fancyhead[L]{\course} \fancyhead[C]{\assignment} \fancyhead[R]{\due} \renewcommand{\footrulewidth}{0.4pt} \fancyfoot{} %\fancyfoot[R]{\fontsize{8}{10} \selectfont Page \thepage~of \pageref{LastPage}} \fancyfoot[L]{\fontsize{10}{12} \selectfont Source file available at \href{\courselink}{\textbf{\courselink}}} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} \newtheorem{Solution}{Solution} % custom \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} %% custom commands \newcommand*{\abs}[1]{\lvert #1\rvert} % absolute values, cardinality \newcommand*{\eps}{\varepsilon} % prettier epsilon \newcommand*{\R}{\mathbb{R}} % real numbers \newcommand*{\C}{\mathbb{C}} % complex numbers \newcommand*{\Q}{\mathbb{Q}} % rational numbers \newcommand*{\Z}{\mathbb{Z}} % integers \newcommand*{\N}{\mathbb{N}} % natural numbers \newcommand*{\F}{\mathbb{F}} % field \newcommand*{\family}{\mathcal{F}} % family \newcommand*{\GL}{\mathbf{GL}} % general linear group \newcommand*{\what}[1]{\widehat{#1}} % wider hat \newcommand*{\wbar}[1]{\overline{#1}} % wider bar \newcommand*{\mcal}[1]{\mathcal{#1}} % mathcal \newcommand*{\mbf}[1]{\mathbf{#1}} % mathbf \newcommand*{\mbb}[1]{\mathbb{#1}} % mathbb % operators \let\Pr\relax\DeclareMathOperator*{\Pr}{\mathbf{Pr}} % probability \DeclareMathOperator*{\E}{\mathbb{E}} % expectation \DeclareMathOperator*{\Var}{\mathbf{Var}} % variance \DeclareMathOperator*{\Span}{span} % span \DeclareMathOperator{\tr}{tr} % trace \DeclareMathOperator{\rank}{rank} % rank \DeclareMathOperator{\supp}{supp} % support \DeclareMathOperator{\diam}{diam} \begin{document} \noindent Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem. \vskip10pt \begin{problem}[1 pt] Show that if $G$ is a connected graph that is not regular, then $G$ contains \textbf{adjacent} vertices $u$ and $v$ such that $\deg u \ne \deg v$. \textbf{Hint}: there is a reason why this problem is worth 1 pt. \end{problem} \begin{problem}[2 pts] Let $G$ be a graph on $n$ vertices. Prove that if $\Delta(G)+\delta(G)\geq n-1$ then $G$ is connected. \end{problem} \begin{problem}[2 pts] Let $G$ be a graph with the property that $\deg u+\deg v\equiv 1\pmod 2$ for every $uv\in E(G)$. Prove that $\abs{E(G)}$ is even. \end{problem} \begin{problem}[2 pts] Let $G$ be a connected graph and suppose that $f\colon V(G)\to\Z$ is a function with the property that $f(u)+f(v)\equiv 0\pmod 3$ for every $uv\in E(G)$. Prove that if $G$ is \emph{not} bipartite, then $f(v)\equiv 0\pmod 3$ for every $v\in V(G)$. \end{problem} \begin{problem}[2 pts] Let $G$ be a graph on $n$ vertices. Prove the following: \begin{enumerate} \item $\delta(G)+\delta(\wbar G)\leq n-1$, \item $\delta(G)+\delta(\wbar G)= n-1$ if and only if $G$ is regular. \end{enumerate} \end{problem} \begin{problem}[0.5+0.5 pts] Determine whether or not the following sequences are graphical. If the sequence is graphical, draw a picture of a graph with that degree sequences. If the sequence is not graphical, prove this. \begin{enumerate} \item $5,3,3,3,3,2,2,2,1$ \item $6,5,5,4,3,2,1$ \end{enumerate} \end{problem} \end{document}