\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=1cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem} \setlist{itemsep=0.5em} \usepackage{xcolor} \definecolor{forestgreen}{rgb}{0.13, 0.55, 0.13} \usepackage[colorlinks = true, linkcolor = forestgreen, urlcolor = forestgreen, citecolor = forestgreen, anchorcolor = forestgreen]{hyperref} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{tikz} \usepackage{mathabx} \usepackage{lastpage} %% header, footer definitions \def\course{MATH 314} \def\courselink{https://www.gsanmarco.com/graph-theory} \def\assignment{HW \#9} \def\assignlink{hw09.tex} \def\due{Due on April 4} \pagestyle{fancy} \fancyhead[L]{\course} \fancyhead[C]{\assignment} \fancyhead[R]{\due} %\renewcommand{\footrulewidth}{0.4pt} %\fancyfoot{} %\fancyfoot[R]{\fontsize{8}{10} \selectfont Page \thepage~of \pageref{LastPage}} %\fancyfoot[L]{\fontsize{10}{12} \selectfont Source file available at \href{\courselink}{\textbf{\courselink}}} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} \newtheorem{Solution}{Solution} % custom \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} \DeclareMathOperator{\diam}{diam} \newcommand*{\abs}[1]{\lvert #1\rvert} \begin{document} \noindent Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem. \vskip10pt \begin{problem}[0.5 + 0.5 pts] Recall that $K_{n_1,n_2,n_3}$ is the complete tripartite graph with parts of sizes $n_1,n_2,n_3$. Fix any positive integer $n$. \begin{enumerate} [label=(\alph*)] \item Prove that $K_{n,2n,3n}$ is Hamiltonian. \item Prove that $K_{n,2n,3n+1}$ is not Hamiltonian. \end{enumerate} \end{problem} \begin{problem}[1 + 2 pts] Fix any integer $n\geq 3$. \begin{enumerate} [label=(\alph*)] \item Construct an $n$-vertex graph $G$ with ${n-1\choose 2}+1$ many edges such that $G$ is \emph{not} Hamiltonian. (Note: You must construct such a graph for \emph{every} $n\geq 3$.) \item Prove that if $G$ is an $n$-vertex graph with at least ${n-1\choose 2}+2$ many edges, then $G$ is Hamiltonian. (Hint: Ore. Also, a graph on $k$-vertices has at most ${k\choose 2}$ edges, and ${n-1\choose 2} - {n-2\choose 2} =n-2$ ) \end{enumerate} \end{problem} \begin{problem}[2pts] Let $G$ be a graph on $n\geq 4$ vertices with the property that $N(u)\cup N(v)\supseteq V(G)\setminus\{u,v\}$ for every $u\neq v\in V(G)$. Prove that $G$ is Hamiltonian. \end{problem} \begin{problem}[2pts] Prove that $\alpha(G)+\beta(G)=n$ for any $n$-vertex graph $G$. (Note: You don't need to know anything about matchings to prove this.) \end{problem} \begin{problem}[2 pts] Let $G$ be a bipartite graph on $n$ vertices. Show that $\alpha(G)=n/2$ if and only if $G$ has a perfect matching. \end{problem} \end{document}