Last time:

Definition. *Let* G *be a multigraph.*

- An *Eulerian circuit* is a circuit in G that traverses each edge exactly once and uses all vertices.
- An Eulerian trail is an open trail in G that traverses each edge exactly once and uses all vertices.

Lemma. Let G be a multigraph, and let

$$\mathsf{T} = (v_0, e_1, v_1, e_2, \dots, v_{k-1}, e_k, v_k)$$

be a trail in G. Fix v any vertex in T.

(1) If T is a circuit (i.e. $v_0 = v_k$), then T contains an even number of edges incident to v.

(2) If T is open and $v \neq v_0, v_k$, then T contains an even number of edges incident to v.

(3) If T is open and $v = v_0, v_k$, then T contains an odd number of edges incident to v.

Theorem (6.1). *Let* G *be a multigraph. Then* G *is Eulerian if and only if* G *is connected and all vertices have even degree.*

Theorem (6.2). Let G be a multigraph. Then G has an Eulerian trail if and only if G is connected and has exactly two odd-degree vertices.

Definition. *Let* G *be a graph.*

- A Hamiltonian cycle is a cycle in G that uses all vertices.
- *A* Hamiltonian path is a path in G that uses all vertices.
- G is a Hamiltonian graph if it contains a Hamiltonian cycle.

Example. Decide if the following graphs contain a Hamiltonian cycle or a Hamiltonian path.

Some first remarks: Assume G is a graph on $n \ge 3$ vertices and C is a Hamiltonian cycle in G. Then

- (a) Deleting any edge of C gives a Hamiltonian path in G.
- (b) $C \cong C_n$ is a cycle of length n. Thus G is obtained from C_n by adding some additional edges.
- (c) $C \cong C_n$ contains no cycles of length less than n
- (d) Each $\nu \in V(G)$ has exactly two neighbors in C.
- (e) If $v \in V(G)$ has deg_G v = 2, then both edges incident to v lie on C.

Example. *The following graph is non-Hamiltonian:*

Example. *The Petersen graph is non-Hamiltonian:*

Next: Unlike Eulerianity, deciding if a graph is Hamiltonian is *hard*. We give several sufficient conditions for Hamiltonianity.

Theorem (6.5). *If* G *is a Hamiltonian graph, then for every nonempty proper set* $U \subsetneq V(G)$ *we have Number of components of* $G - U \le |U|$

Example. The following graph is non-Hamiltonian

Corollary. *If* G *contains a cut vertex, then it is non-Hamiltonian.* **Exercise.** *Write down the contrapositive to Theorem 6.5. Prove the Corollary*

Theorem (6.6, Ore's condition). *Let* G *be a graph on* $n \ge 3$ *vertices. If*

 $deg\, u + deg\, \nu \geqslant n$

for each pair u, v of nonadjacent vertices, then G is Hamiltonian.

Corollary (6.7, Dirac's condition). *Let* G *be a graph on* $n \ge 3$ *vertices. If* deg $v \ge n/2$ *for each vertex* v*, then* G *is Hamiltonian.*

Exercise. If $n \ge 3$, then the clique K_n is Hamiltonian.

Exercise. Let $s, t \ge 2$. The complete bipartite graph $K_{s,t}$ is Hamiltonian if and only if s = t.

Exercise (The bound in Ore's condition is sharp). For any n, show that there is a non-Hamiltonian graph G on n-vertices such that deg $u + deg v \ge n - 1$ for each pair u, v of nonadjacent vertices.

Theorem (6.8, Bondy-Chvátal condition). *Let* G *be a graph on* $n \ge 3$ *vertices. Assume* u, v *are nonadjacent vertices such that* deg $u + deg v \ge n$. *Then* G *is Hamiltonian if and only if* G + uv *is Hamiltonian.*

Definition. Let G be a graph on n vertices. The closure C(G) of G is the graph obtained from G by recursively adding edges uv whenever u, v are nonadjacent vertices such that $\deg u + \deg v \ge n$, until no such vertices exist.

Example.

Corollary (6.9). *A graph is Hamiltonian if and only if its closure is Hamiltonian.*

For the last theorem, let us denote

 $N_j(G) = |\{v \in V(G: deg v \leq j)\}| =$ number of vertices with degree at most j

Theorem (6.11, Pósa's condition). *Let* G *be a graph on* $n \ge 3$ *vertices. If for each integer* j *with* $1 \le j < n/2$ *we have*

 $N_{j}(\boldsymbol{G}) < j$

then G is Hamiltonian.