Pointed Hopf algebras over nonabelian groups arXiv: 2206.10726
Guillermo Sanmarco (Iowa State University)
Joint with I Angiono (Córdoba) and S Levitner (Hamburg)
Outline:
1) Introduction
2) The abelian case
3) The non-abelian case
Introduction: (Field IK= &, char=0)
A Hopf Algebra: is an algebra (H, M, U) with additional structure
(H, M, U, S, E, S) H
$$\rightarrow$$
 HOH
(H, M, U, S, E, S) H \rightarrow HOH
(H, M, U, S, E, S) H \rightarrow HOH
(H, M, U, S, E, S) H \rightarrow HOH
(H, M, U, S, E, S) H \rightarrow HOH
(Scamp-like"
2) Enveloping algebra IKG, $\Delta(g) = g \otimes g$, $E(g) = 1$ "Group-like"
2) Enveloping algebra U(g). $\Delta(x) = x \otimes 1 + 1 \otimes x$, $E(x) = 0$ "Thin the"
3) Quantized enveloping algebras $U_q(g)$, $u_q(g)$
E.g: For $g = Sl_2 = \langle f, h, e \rangle$, $U_q(g) = \langle F, K, E / KEK^{-1} = q^2 F, [E,F] = K - K^{-1} - q^{-2} F, [E,F] = K - K^{-1} - q^{-2}$

Definition: A Hopf algebra H is pointed in every simple subcoolgebra is 1-dimensional. i.e. The biggest cosemisimple part of H is (the group algebra of) the group

$$G(H) = \langle x \neq 0 / \Delta(x) = x \otimes x \rangle$$

Example: Uq(g), uq(g) (The group is given by the maximal Torus).

Cartier - Konstant - Hilnor - Moore:
If His cocommutative Then
$$H \leq U(P) \# G$$
, $P = Primitives f H$
Radgoord, Majid:
If H is pointed then $gr H \simeq R \# G$ smash product (are bosonization)
with conduct literation
Globed Hope algebra in GD .
Group-likes \leq Skew-Primitives c...
Andruskiewitsch - Schneider Philosophy:
If H is pointed and finite dimensional, R can be classifed
and then H can be recovered from $gr H$.
Crucial tools most to classify R: Nichols algebras.
Nichols algebras: Fix group G.
 $GVD = h G-graded G modules V = G b / h \cdot V_g \leq V_{ghr}$
This is a blaided category: $C(v_{BW}) = gw_{BV}$ if vely.
Construction: Given V $\in GVD$ tensor algebra TW becomes
Hopp algebra in GYD by $A(v) = var + tav (vel)$. Define Nichols
 $B(v) = binique quotrent of T(v) such that V = Primitives algebra of V'
 $Crucial for the classification: If H is pointed and
 $gr H \cong R \# G(H)$, with $R = GR^n$, then
 $B(R^1) \subset R$, $R^1 = Infinitesimal Brainding of H''$$$

Generation indegree 1 Conjecture [AS] IF H is finite dim, then $B(R^1) = R$ Hence $gr H \simeq B(R^1) \# G$ Equivalently: H is generated by group-likes and skew-primitives. To Recover H from gr H: A 2-cocycle σ on a Hopf algebra A is $\sigma: A \otimes A \longrightarrow k$ with some properties m> Can build a new Hopf algebra A_{σ} (only mult and antipode change) A_{σ} is called a cocycle deformation of A Masuoka Philosophy: If H is such that $gr H \cong R \# G = B(R^1) \# G$ Then $H \cong (B(R^1) \# G)_{\sigma}$ for some σ .

And ruskiewitsch - Schneider Program
Fix a finite group G. To classify fin. dim. pointed Hopf algebras over G
1) Classify VE & YD such that dim B(V) < 20
2) For such V, give a presentation of B(V) (gens + rels).
3) Use 2) To show that the conjecture
$$R = B(R^1)^{n/2}$$
 holds,
4) If $gr H \subseteq B(V) \# G$, show that $H \subseteq (B(V) \# G)_{O}$ (Masuroka).

2) <u>Case Gabelian</u>:

Simple objects of GYD = { V = D Vg / h. Vg = & th,g}. are 1-dimensional, parametrized by pairs (g, x) Satisfying certain property. $(g, \chi) \xrightarrow{k} \{x\} \in \overset{G}{G} \chi \xrightarrow{k}$ where $deg \times = g$, $h \cdot x = \chi(h) \times \cdot$ Now $\mathbb{B}(k_{X}) = \begin{cases} k_{X} & \text{if } \chi_{(g)} \text{ root of unity order } N \\ k_{X} & \text{if } \chi_{(g)} & \text{root of unity order } N \end{cases}$ $\chi(g)$ determines the braiding, $C(x \otimes x) = \chi(g) \times \otimes x$. Really easy to decide which simples give findim Nichols. Next step: decide when \oplus of simples give findim. Nichols. Heckenberger (~08): Introduced root systems for these non-simple Nichols algebras, reversing Lusztig's construction of the Way! group action in the quantum group.

From now on, given V E & YD we only case about the braining C: VOV -> VOV (B(V) as a bialgebra only depends on c)

Construction Given $q = (q_{ij})^n$, $q_{ij} \in H^{\times}$ we build $V = H^{\times} + x_1, \dots, x_n$ with $C(x_i \otimes x_j) = q_{ij} \times y_i \otimes x_i$ "Diagonal braiding" For this q one defines a "Dynkin diagram" Graph with multipled vertices $q_{ij}^{mn} = \frac{q_{22}}{2} + \cdots + \frac{q_{mn}}{n}$ dege between $i \neq j$ iff $q_{ij} q_{jj} \neq 1$, with that label $q_{ij} = \frac{q_{ij} q_{jj}}{2} + \frac{q_{ij}}{2}$ If G is abelian, all $V \in GYD$ are of this form! (The possibilities for 9 = (9ij) depend on \widehat{G}) General fact (Lyndon words Theory) B(V) admits a PBW-Type basis of the form $\begin{cases} TI \times \alpha^{n_{d}} \\ u \in \Lambda(v) \end{cases}$: $0 \le n_{d} < N_{d}$ Where each X_{d} is \mathbb{Z}^{n} -homogeneous of degree of $\Lambda(v) = The set of roots of V. =$

Major difference with Lusztig's construction: A matrix $q=(q_{ij})$ could be reflected to a <u>different</u> matrix $P=(P_{ij})$, and now Lusztig's isomorphism $T_i: B(q) \# \mathbb{Z}^n \longrightarrow B(P) \# \mathbb{Z}^n$ (as algebras) So now we have a Weyl groupoid And one obtains a "root system" considering all the sets $\Lambda(P)$ where $P=(P_{ij})$ runs over all reflections of q. The same Phenomenon was known for certain Lie superalgebras (add roots)

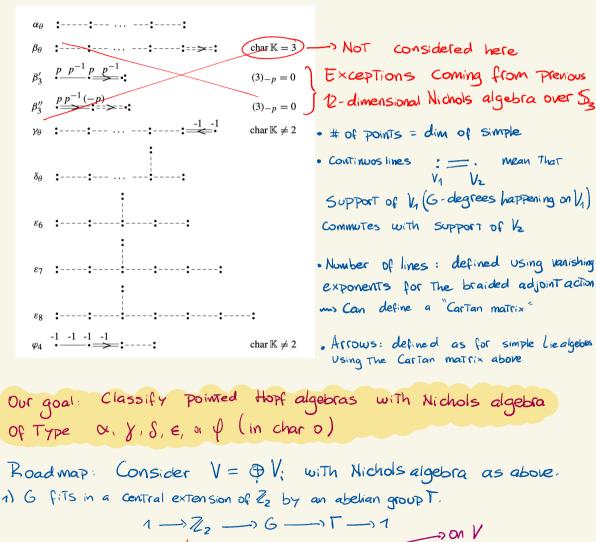
Example: Let $(d_i a_{ij})$ symmetrized finite Cartan matrix. with Lie alg.g Let q root of unity (of odd order) and define $q = (q^{d_i a_{ij}})_{i,j}$ Then $B(q) \simeq u_q^{\dagger}(q)$, Positive part of small quantum group.

Example: Let q of odd order and q with Dynkin diagram $\frac{q^2}{q} \frac{q^2}{q^2} \frac{q^2}{q^2} - \frac{1}{m} - \frac{q^2}{n^2} \frac{q^2}{q^2} \frac{q^2}{q}$ Then $B(q) \simeq u_q^{\dagger} se(min)$

3) Case G nonabelian (Joint With Angiono, Laitner)
Simples of GYD: parametrized by Pairs (
$$g^{G}, P$$
)
Conjugacy class Irrep of $G^{g},$
Such a pair induces $M(g^{G}, p) = Ind_{G^{g}}^{G}(p) \in Irr(GYD)$
Major obstruction: Very hard to classify simples in GYD
With finite dimensional Nichols algebra.
Example: $G = S_n$, $(n_2)^{G} = Conjugacy$ class of Transpositions.
 $P = Irrep of S_n^{(12)}$ built from Sign.
Then dim $B((n_2), p) = \begin{cases} 12 & n = 3 \\ 576 & n = 4 \\ 8294400 & n = 5 \end{cases}$ Formin-Kirillov
 $g = Conjecturally \approx 1, n > 5 \end{cases}$

Heckenberger-Vendramin 18
Classified nonsimples
$$\oplus V_i \in GVD$$
 such that dim $B(\oplus V_i) < \infty$
Described The possibilities for G

Crucial Tool: Weyl groupoids and root systems can be constructed Picture of the classification:



2) Folding construction (Lentner) If Zz acts Trivially, The Nichols algebra is built using Nichols algebras over abelian groups and Dynkin diagram automorphisms.

3) If the rank (# simple factors) is
$$\geq 4$$
, one can show that Z_2 acts trivially
(4) In general one can "trivialize" the action of Z_2 on V using a certain
endofunctor F_{η} : $\delta D \longrightarrow \delta D$ constructed from a 2-cocycle $\eta \in Z^2(G, |k')$,
We show that there exists η such that Z_2 acts trivially on $F_{\eta}(V)$.
5) Use what is known for $B(F_{\eta}(V))$ (here the group is abolian)
To better understand $B(V)$
Summary of results:
Let H finite-dimensional Hopf algebra over a non-abelian group G
and with Nichols algebra $B(V)$ of type $X_1 \in S \propto Q$, so
that $gr H \subseteq R \# G$ where $B(V) \longrightarrow R$. Then
1) $R = B(V)$ (ie: H is generated by group-likes and skew-frimitives)
2) Defining relations for $B(V)$ are known.
3) There exists a Hopf 2-cocycle D for $B(V) \# G$ such that
 $H \cong (B(V) \# G)_{\overline{D}}$

Thank you!