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Compacteness. Compact subspaces of R.

Last Time:

Theorem 2 : A product XXY is compact if and only if X andy are compact

To prove it ,

we will need The following :

The Tube Lemma : Consider Xx) where Y is compact. Fix xoex

If NXXY is an open set containing (xoY XY , Then There exists

al open set U of X containing to suchThat UxYN

Proof of Thm2 :

(3) If XXY is compact, since the projections

# : xY + X and Py : XXY - Y are continuous and surjective,

we deduceThat X and Y are compact.



#) Assume X and Y are compact . We want to show That XxY is compact , so

Take an open cover &Wilen of XxY .

For each xeX
,
we have (xixY & U Wi .

Since (xixY is homeomorphic to Y,
it

which is compact , we knowThat kxxy is compact.
->
Notation

Thus There exists a finite subset I(x) such that hxxY = U Wi = Nhx)
it [(x)

Since Y is compact ,
we can apply The Tube Lemma and deduceThat There exists

some open UC in X with harxY @UXY e NCL

This holds for every ex .

Thus we have an open cover &U
ex

of X

Since X is compact .
There exist a finite subset AX SuchThat X = U U() Therefore

xeA

X xy = (0()) + y = Uv(( +Y = UN(x) = U U Wi
XEA xA Kie[(x)

Finitel
So any open cover of XXY admits a finite subcover

it

Note : The still holds for arbitrary products with The product Topology (Tychonoff's Thm Chapter 5)



Compactness in R

Recall : Proved (a
, b) .

[a,b)
,

(a
. b]

,
(a

,
3)

· [a, 0) , 10, a) .

(-y
,
a] are not compact.

Theorem 1: For any axb ,
The interval [a .

b][T is compact.

Prof : Let u= \Vitien open sets inM with [ab] - U .

WiS : There exists a finite subcover of M.

Consider The set

C= (xe(a ,
b) ) [a ,

x] admits a finite subcover of M . )
Claime :

C is non-empty and has an upper bound .

Thus it has a supremom S = Sup C.

Roof : Since a tab] <U ,

we have a Up for some je e

Since Up is open in R
,
EEso Such That (a - E

,

a + 2) & Uj. In particular

[a
,

a +z] [U;, This a +ee
C

,
which is non empty. U
~ma J

Also, b is an uper bound for C, because Cc(a
,
b)

.

b

[claim !



Claim 2 : S = SupCEC .

Proof: First , we show sela
, b] The inequality a = c follows using

That a +e
C for

a To from previous claim. The inequality seb follows because b is an upper bound for

and S is The smallest one.

Second we show [a . S] admits a finite subcover of M .

Since sela
, b] = U Vi

&
in

we have se Up for some Ken. Since UKER is open .

There exists &yo suchThat

Is . E
,
Stel - UK

,

and since as
,

we can assume That a <SE

UK
[ Mmmm 3a

S-
Ed

S SE

Now
,

Since S-E < S = SupC ,
we know se is not an upper bound for C.

Hence Ide Cn(S-E
, s] . But then [a ,

d] admits a finite subcover (because dec

Since[d
, s] < Un

,
also [a

.
S] = [ad]vId , s] admits a finite subcover.

↑
claim z



Claim 3 S = b
->

:

Proof: We proved SES. Assuming for a contradictionThat Stb,

on claim 2 we could have assumed also sta-b,

so [S ,
S+ ] =U . Therefore

[a , s + z] = [ a . s] uts . Ste]
also admits a finite subcover

.

But This meansthat

S + E eC , contradictingThat s is an opper bound
2

for C. ↳
claim 3

Therefore, [a
.
s] = [a . b] admits a finite subcover for M.

This works for any open
cover

,
hence [a

,b) is compact I
.


