\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=1cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem} \setlist{itemsep=0.5em} \usepackage{xcolor} \definecolor{forestgreen}{rgb}{0.13, 0.55, 0.13} \usepackage[colorlinks = true, linkcolor = forestgreen, urlcolor = forestgreen, citecolor = forestgreen, anchorcolor = forestgreen]{hyperref} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{tikz} \usepackage{mathabx} \usepackage{lastpage} \usepackage{tikz} \usepackage{verbatim} \usetikzlibrary{shapes.geometric,shapes.multipart,arrows,calc} \pgfdeclarelayer{background} \pgfdeclarelayer{foreground} \pgfsetlayers{background,main,foreground} \tikzset{ edge/.style = {black, ultra thick, outer sep=2pt}, vertex/.style = {draw=black, very thick, fill=white, circle, minimum width=8pt, inner sep=2pt, outer sep=1pt}, arc/.style = {black, ultra thick, outer sep=2pt, decoration={markings, mark=at position #1 with {\arrow[scale=1.5]{latex}}}, postaction=decorate}, arc/.default = 0.58 } %% header, footer definitions \def\course{MATH 314} \def\courselink{https://www.gsanmarco.com/graph-theory} \def\assignment{HW \#7} \def\assignlink{hw07.tex} \def\due{Due on Mar 21} \pagestyle{fancy} \fancyhead[L]{\course} \fancyhead[C]{\assignment} \fancyhead[R]{\due} %\renewcommand{\footrulewidth}{0.4pt} %\fancyfoot{} %\fancyfoot[R]{\fontsize{8}{10} \selectfont Page \thepage~of \pageref{LastPage}} %\fancyfoot[L]{\fontsize{10}{12} \selectfont Source file available at \href{\courselink}{\textbf{\courselink}}} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} \newtheorem{Solution}{Solution} % custom \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} %% custom commands \newcommand*{\abs}[1]{\lvert #1\rvert} % absolute values, cardinality \newcommand*{\eps}{\varepsilon} % prettier epsilon \newcommand*{\R}{\mathbb{R}} % real numbers \newcommand*{\C}{\mathbb{C}} % complex numbers \newcommand*{\Q}{\mathbb{Q}} % rational numbers \newcommand*{\Z}{\mathbb{Z}} % integers \newcommand*{\N}{\mathbb{N}} % natural numbers \newcommand*{\F}{\mathbb{F}} % field \newcommand*{\family}{\mathcal{F}} % family \newcommand*{\GL}{\mathbf{GL}} % general linear group \newcommand*{\what}[1]{\widehat{#1}} % wider hat \newcommand*{\wbar}[1]{\overline{#1}} % wider bar \newcommand*{\mcal}[1]{\mathcal{#1}} % mathcal \newcommand*{\mbf}[1]{\mathbf{#1}} % mathbf \newcommand*{\mbb}[1]{\mathbb{#1}} % mathbb % operators \let\Pr\relax\DeclareMathOperator*{\Pr}{\mathbf{Pr}} % probability \DeclareMathOperator*{\E}{\mathbb{E}} % expectation \DeclareMathOperator*{\Var}{\mathbf{Var}} % variance \DeclareMathOperator*{\Span}{span} % span \DeclareMathOperator{\tr}{tr} % trace \DeclareMathOperator{\rank}{rank} % rank \DeclareMathOperator{\supp}{supp} % support \DeclareMathOperator{\diam}{diam} \begin{document} \noindent Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem. \vskip10pt \begin{problem}[2pts] For infinitely many integers $n$, construct a graph $G$ with the following properties: \begin{enumerate}[label=$\bullet$] \item $G$ is connected and has $n$ vertices, and \item $G$ is \emph{not} a tree, and \item Every $v\in V(G)$ which is not a leaf of $G$ is a cut-vertex of $G$. \end{enumerate} \end{problem} \begin{problem}[1 + 1 pts]\label{spanning} Let $G$ be a graph and suppose that $H$ is any spanning subgraph of $G$. \begin{enumerate}[label=(\alph*)] \item Prove that $\lambda(G)\geq\lambda(H)$. \item Prove that $\kappa(G)\geq\kappa(H)$. \end{enumerate} \end{problem} \begin{problem}[1 + 2 pts]\label{delete_edge} Let $G=(V,E)$ be a graph with at least one edge and fix any $e\in E$. \begin{enumerate}[label=(\alph*)] \item Prove that $\lambda(G)\geq\lambda(G-e)\geq\lambda(G)-1$. \item Prove that $\kappa(G)\geq\kappa(G-e)\geq\kappa(G)-1$. \end{enumerate} \end{problem} \begin{problem}[1 pts] For each non-negative integer $k$, find an example of a graph $G$ with $\kappa(G)=\lambda(G)=1$, yet there is some vertex $v\in V(G)$ such that $\kappa(G-v)=\lambda(G-v)=k$. That is to say, the natural analogue of Problem~\ref{delete_edge} fails when deleting vertices instead of edges. \end{problem} \begin{problem}[2 pts] Let $G$ be a graph. The \emph{$k$-th power of $G$} is the graph $G^k$ which has the same vertex-set as $G$ and $uv\in E(G^k)$ iff $d_G(u,v)\leq k$. Prove that if $G$ is a connected graph on at least $k+1$ vertices, then $G^k$ is $k$-connected. \end{problem} \end{document}