\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=1cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem} \setlist{itemsep=0.5em} \usepackage{xcolor} \definecolor{forestgreen}{rgb}{0.13, 0.55, 0.13} \usepackage[colorlinks = true, linkcolor = forestgreen, urlcolor = forestgreen, citecolor = forestgreen, anchorcolor = forestgreen]{hyperref} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{tikz} \usepackage{mathabx} \usepackage{lastpage} %% header, footer definitions \def\course{MATH 314} \def\courselink{https://www.gsanmarco.com/graph-theory} \def\assignment{HW \#13} \def\assignlink{hw13.tex} \def\due{Due on May 2} \pagestyle{fancy} \fancyhead[L]{\course} \fancyhead[C]{\assignment} \fancyhead[R]{\due} %\renewcommand{\footrulewidth}{0.4pt} %\fancyfoot{} %\fancyfoot[R]{\fontsize{8}{10} \selectfont Page \thepage~of \pageref{LastPage}} %\fancyfoot[L]{\fontsize{10}{12} \selectfont Source file available at \href{\courselink}{\textbf{\courselink}}} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} \newtheorem{Solution}{Solution} % custom \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} \DeclareMathOperator{\diam}{diam} \newcommand*{\abs}[1]{\lvert #1\rvert} \begin{document} \noindent Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem. \vskip10pt \begin{problem}[2pts] Prove that $R(3,n)\leq n^2$ for every positive integer $n$. \end{problem} \begin{problem}[2pts] The $3$-color Ramsey number $R(m,n,p)$ is the smallest integer $N$ such that every 3-coloring of $E(K_N)$ (say with colors red, blue and green) contains either a red copy of $K_m$, a blue copy of $K_n$ or a green copy of $K_p$. \vskip5pt Prove that $R(3,3,3)\leq 17$. \end{problem} \begin{problem}[2pts] Suppose that $G$ is a graph that has no induced $K_{1,4}$ and such that $\omega(G) = 4$. Show that $\Delta(G)\leq 17$. Hint: $17+1=R(4,4)$. \end{problem} \begin{problem}[2pts] Show that $N=7$ is the smallest integer $N$ such that every red,blue-coloring of $E(K_N)$ contains either a red $K_{1,3}$ or a blue copy of $K_3$. \end{problem} \begin{problem}[2 pts] Let $n$ be a positive integer and set $N=3n-1$. Construct a red,blue-coloring of $E(K_{N-1})$ which \emph{does not} contain a monochromatic matching with $n$ edges. Hint: Break $V(K_{N-1})$ into two pieces, one of size $2n-1$ and the other of size $n-1$, and color the edges based on how they intersect these two pieces. \end{problem} \end{document}