On pointed Hopf algebras over non abelian groups with decomposable braiding

Nichols algebras

Let H with bijective antipode and $V \in {}^{H}_{H}\mathcal{YD}$.

There exists unique $R = \bigoplus_{n \geq 0} R^n$ graded Hopf in ${}^H_H \mathcal{YD}$ s.t. $R^0 = \Bbbk$, $\mathcal{P}(R) = R^1 \simeq V$ and $R = \Bbbk \langle R^1 \rangle$.

Definition: $R = \mathcal{B}(V)$ is the Nichols algebra of V.

Why care?

Classification of (pointed) Hopf algebras!

Let A s.t. the coradical A_0 is Hopf subalg. Then the coradical filtration (A_n) is a Hopf filtration;

- $gr A = \bigoplus_{n \ge 0} A_n / A_{n-1} is a Hopf algebra;$
- $ightharpoonup \operatorname{gr} A \simeq R\#A_0$, where $R=(\operatorname{gr} A)^{\operatorname{co} A_0}$ is graded Hopf algebra in ${}^{A_0}_{A_0}\mathcal{Y}\mathcal{D}$.

Def: $R^1 \in {}^{\hat{A_0}}_{A_0} \mathcal{YD}$ is the infinitesimal braiding of A.

Then what? Lifting Method!

Assume H fin. dim. cosemisimple.

Goal: classify fin. dim. Hopf algebras A such that the coradical $A_0 \simeq H$ is Hopf subalg. of A.

Suggestion [AS]:

- 1. Classify $V \in {}^H_H \mathcal{YD}$ such that $\dim \mathcal{B}(V) < \infty$.
- 2. Obtain a presentation of $\mathcal{B}(V)$.
- 3. Check if $(\operatorname{gr} A)^{\operatorname{co} A_0} \simeq \mathcal{B}(V)$.
- 4. Classify A's such that gr $A \simeq \mathcal{B}(V) \# H$. "Liftings". Hint: are all liftings cocycle deformations?

Non abelian groups context

Assume $H = \Bbbk\Gamma$ non abelian group algebra. [HV]: Classify pairs (V_1, V_2) of abs simple in ${}^{\&\Gamma}_{\&\Gamma}\mathcal{YD}$ such that $c_{V_2V_1}c_{V_1V_2} \neq \operatorname{id}$ and $\dim \mathcal{B}(V_1 \oplus V_2) < \infty$.

Our problem [HV, Example 1.10]

Let $q_1, q_2 \in \mathbb{k}^{\times}$ s.t. $\omega := -q_1 q_2$ is 3-th root of 1. Set $HV_1 = V_1 \oplus V_2$ the braided vector space with

 $V_1 = \mathbb{K}\{x_1, x_2, x_3\}, V_2 = \mathbb{K}\{x_4\}$ and

 $c(x_i \otimes x_j) = -x_{2i-j} \otimes x_i, c(x_4 \otimes x_4) = -\omega^2 x_4 \otimes x_4,$ $c(x_i \otimes x_4) = q_1 x_4 \otimes x_i, \quad c(x_4 \otimes x_i) = q_2 x_i \otimes x_4.$

Our Γ have elements $(g_i)_{i \in \mathbb{I}_4}$ and "1-cocycles" $(\chi_i)_{i \in \mathbb{I}_4}$ satisfying compatibilities $\rightsquigarrow \mathsf{HV}_1 \in \mathbb{k}\Gamma \mathcal{YD}$.

Goal: develop lifting method for $\mathcal{B}(HV_1)$.

2. Presentation of $\mathcal{B}(HV_1)$

Adjoint action of HV_1 on $T(HV_1)$:

$$(\operatorname{ad}_c x_i)y = x_iy - (g_i \cdot y)x_i, \quad i \in \mathbb{I}_4, \ y \in T(\operatorname{HV}_1).$$

Notation: $x_{i_1...i_n} := (ad_c x_{i_1}) ... (ad_c x_{i_{n-1}}) x_{i_n}$.

Theorem[AnSa]: $\mathcal{B}(HV_1)$ is minimally presented by generators $(x_i)_{i \in \mathbb{I}_4}$ and relations

$$x_i^2 = 0, i \in \mathbb{I}_3,$$

$$x_1x_2 + x_3x_1 + x_2x_3 = 0, x_2x_1 + x_1x_3 + x_3x_2 = 0,$$

$$x_4^6 = 0,$$

$$(x_{124}x_{134} + \omega^2 x_{134}x_{124})^3 = 0,$$

$$x_{i14} - \omega x_{12-i4} = 0, i \in \mathbb{I}_{2,3},$$

$$x_4x_{h4} - q_2x_{h4}x_4 = 0, h \in \mathbb{I}_3.$$

3. Generation in degree one

Theorem[AnSa]: Any pointed f.d. Hopf algebra over Γ with infinitesimal braiding HV₁ is generated by its group-like and skew-primitive elements.

4. Liftings of HV_1 over Γ

We defined a set $\mathcal{R}_{HV_1} \subset \mathbb{k}^4$ consisting of 4-uples $\lambda = (\lambda_i)_{i \in \mathbb{I}_4}$ satisfying constraints. For example,

 $\lambda_1 = 0 \text{ if } \chi_i^2 \neq \varepsilon \text{ or } g_i^2 = 1 \text{ for some } i \in \mathbb{I}_3,$

 $\lambda_2 = 0 \text{ if } \chi_i \chi_j \neq \varepsilon \text{ or } g_i g_j = 1 \text{ for some } i \neq j \in \mathbb{I}_3.$

Define $\mathcal{L}(\lambda)$ for any $\lambda \in \mathcal{R}_{HV_1}$ as

$$T(\text{HV}_1) \# \& \Gamma / \begin{pmatrix} x_4 x_{14} - q_2 x_{14} x_4 \\ x_1^2 - \lambda_1 (1 - g_1^2), \\ x_1 x_2 + x_3 x_1 + x_2 x_3 - \lambda_2 (1 - g_1 g_2), \\ x_{214} - \omega x_{134} - \lambda_2 x_4, \\ x_4^6 - \lambda_3 (1 - g_4^6), \\ \mathsf{a}_{124134} - \lambda_4 (1 - g_1^{12} g_4^6) \end{pmatrix}$$

Theorem[AnSa]: Let $\lambda \in \mathcal{R}_{HV_1}$. Then

- 1. $\mathcal{L}(\lambda)$ is a lifting of $\mathcal{B}(\mathsf{HV}_1)$ over $\Bbbk\Gamma$.
- 2. $\mathcal{L}(\lambda)$ is a cocycle deformation of $\mathcal{B}(\mathsf{HV}_1) \# \mathbb{k} \Gamma$. Conversely, if L is lifting of $\mathcal{B}(\mathsf{HV}_1)$ over Γ , there exist $\lambda \in \mathcal{R}_{\mathsf{HV}_1}$ such that $L \simeq \mathcal{L}(\lambda)$.

References

- [AS]Andruskiewitsch, N., Schneider, H.-J. Lifting of quantum linear spaces and pointed Hopf algebras of order p^3 . J. Algebra 209 (2): 658–691, (1998).
- [AnSa] Angiono, I., Sanmarco, G. *Pointed Hopf algebras over non abelian groups with decomposable braidings, I.* arXiv:1905.04285.
- [HV] Heckenberger, I., Vendramin, L. *The classification of Nichols algebras with finite root system of rank two.* J. Europ. Math. 7, 1977–2017 (2017).

