\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=1cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem} \setlist{itemsep=0.5em} \usepackage{xcolor} \definecolor{forestgreen}{rgb}{0.13, 0.55, 0.13} \usepackage[colorlinks = true, linkcolor = forestgreen, urlcolor = forestgreen, citecolor = forestgreen, anchorcolor = forestgreen]{hyperref} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{tikz} \usepackage{mathabx} \usepackage{lastpage} %% header, footer definitions \def\course{MATH 314} \def\courselink{https://www.gsanmarco.com/graph-theory} \def\assignment{HW \#8} \def\assignlink{hw06.tex} \def\due{Due on March 28} \pagestyle{fancy} \fancyhead[L]{\course} \fancyhead[C]{\assignment} \fancyhead[R]{\due} %\renewcommand{\footrulewidth}{0.4pt} %\fancyfoot{} %\fancyfoot[R]{\fontsize{8}{10} \selectfont Page \thepage~of \pageref{LastPage}} %\fancyfoot[L]{\fontsize{10}{12} \selectfont Source file available at \href{\courselink}{\textbf{\courselink}}} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} \newtheorem{Solution}{Solution} % custom \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} \DeclareMathOperator{\diam}{diam} \begin{document} \noindent Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem. \vskip10pt \begin{problem}[2 pts] \begin{enumerate}[label=(\alph*), leftmargin=*] \item For which $n$ is the complete graph $K_n$ Eulerian? When does $K_n$ contain an Eulerian trail? \item For which $s$, $t$ is the complete bipartite graph $K_{s,t}$ Eulerian? When does $K_{s,t}$ contain an Eulerian trail? \end{enumerate} \end{problem} \begin{problem}[2 pts] Let $G$ be a connected regular graph that is not Eulerian. Show that, if $\overline G$ is connected, then $\overline G$ is Eulerian. Deduce that the complement of the Petersen graph is Eulerian. \end{problem} \begin{problem}[2pts] Use Eulerian circuits to show that if $G$ is a connected even-regular graph (i.e. all vertices have even degree), then $G$ has no bridges. \end{problem} \begin{problem}[2 + 2 pts] Let $G$ and $H$ be any graphs. Recall that the \emph{Cartesian product} of $G$ and $H$ is the graph $G\times H$ which has vertex set $V(G)\times V(H)$ and $\{(u_1,v_1),(u_2,v_2)\}\in E(G\times H)$ if and only if either $u_1=u_2$ and $v_1v_2\in E(H)$ or $u_1u_2\in E(G)$ and $v_1=v_2$. \begin{enumerate}[label=(\alph*), leftmargin=*] \item Prove that $G\times H$ is connected if and only if both $G$ and $H$ are connected. \item Prove that $G\times H$ is Eulerian if and only if both $G$ and $H$ are connected and also: \begin{enumerate}[label=$\bullet$] \item Both $G$ and $H$ are even-regular, or \item Both $G$ and $H$ are odd-regular. \end{enumerate} \end{enumerate} \end{problem} \end{document}