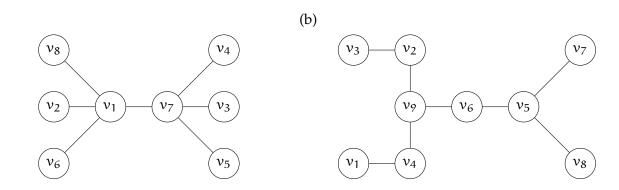
(a)

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem.

Problem 1 (0.5 + 0.5 pts). Determine the Prüfer code of the following trees, using the ordering $v_1 \leq v_2 \leq ...$ for the vertices.



Problem 2 (0.5 + 0.5 pts). For the following sequences, draw a picture of the (labeled) tree which has that sequence as its Prüfer code (using the standard ordering of the integers). Your tree should have vertex-set { v_1, \ldots, v_n } for some integer n.

(a) $(v_5, v_7, v_5, v_1, v_3, v_5, v_5)$ (b) $(v_4, v_4, v_1, v_2, v_1, v_2, v_3)$

Problem 3 (1 pts). Determine (with proof) all trees T (up to isomorphism) on $n \ge 2$ vertices whose Prüfer code uses each element of V(T) at most once (under any arbitrary ordering of V(T)).

Problem 4 (2 pts). Fix an integer $n \ge 2$ and let d_1, \ldots, d_n be a sequence of positive integers with $\sum_{i=1}^{n} d_i = 2n - 2$. Use Prüfer codes to show that there is a tree with degree sequence d_1, \ldots, d_n .

Problem 5 (2 pts). For a graph G, define the relation R on V(G) by u Rv if and only if u = v or there is a cycle in G containing both u and v. Find a graph G wherein R is *not* an equivalence relation on V(G). (You are welcome to define G via a picture, though, of course, you must still demonstrate that R is not an equivalence relation on this G)

Problem 6 (3 pts). For a graph G, define the relation R on E(G) by e R s if and only if e = s or there is a cycle in G containing both e and s. Prove that R is an equivalence relation on E(G).