21. Monday, August ST. Compacteness Proposition 20.4 If X is Hausdorff and Y S X is a compact subspace, Then Y is closed in X Proof Let us show that Xiy is open, i.e., Xiy is a neighborhood of each of its points. Fix X. E X.Y. WTS: 7 Vopen with X. EVEX.Y. Now, since X is Hausdorff, for each yey we have x ty, Therefore There exist open sets V_y , U_y with $x_0 \in V_y$, $y \in U_y$ and $V_y \cap U_y = p$. Note that Y C U Uy. Since Y is compact, This cover admits a finite subcover Thus There are your you if such That Y = Uy une Uy. Now we take V = Vy n - n Vy, We verify it satisfies the required properties.

1) Vis open, because it is the intersection of finitely many open sets in X
2) V contains x, because each Vy does for any
$$y \in Y$$
.
3) V n Y = \emptyset , Thus $V \subseteq X \cdot Y$
Infact, if zey, since $Y \subseteq U_{Y_1} \cup U_{Y_n}$, we have $Z \in U_{Y_1}$ for some j
Therefore $Z \notin V_{Y_1}$ because $U_{Y_1} n V_{Y_1} = \emptyset$. Hence $Z \notin V$
This proofs that X Y is a nobul of every x $\in X \cdot Y$.
Therefore X Y is open.
Sketch of the proof

Corollary Let f: X -> Y be a bijective continuous map. If X is compace and Y is Haussdorf, Then f is a homeomorphism. Proof: Only need to prove that f is open, which is equivalent to f being closed Take C=X closed Since X is compact, by prop 20.3, C is compact. Hence, by Prop 20.2, f(C) = Y is compace. By prop 20.4, since Y is Hausdorff, Cis closed in Y. Examples. Let exp: [a1] -> S' , exp(t) = (cos art, sin (art)) 1) We proved exp. [0,1) -> S' is continuous bijection but not open. Here 5' is Hausdorff, however [0,1) is not compact 2) We proved exp. [0,1]/ --> S1 is a continuous bijection and claimed that hence it is a homeomorphism. Now we know that's true, because [0,]/3013 is compart and S' is Hausdorff. 3) Same argument applies e.g to HW 5.5. Your maps are howeomorphism

So for example $S^1 \approx \mathbb{R}P^1$ and $\mathbb{R}P^2 \approx D^2 / \{x \sim -x \text{ for } x \in S^1\}$ Theorem 2: A product X × Y is compact if and only if X and Y are composit To prove it, we will need the following: The Tube Lemma: Consider XXY where Y is compact. Fix xo eX If N = X x Y is an open set containing Lx. Y x Y, Then There exists an open set U of X containing Xo such That UXY S N Proof: Since N = X × Y is open and contains 4×07 × Y, for each yey There exist open sets Up = X and Up = Y with (x,y) = Up x Up = N. Since Y = U by and Y is compact, we have $Y = V_y \cup \dots \cup V_y$ for some Y's. Consider U = Uy, n ..., Uy. We prove it satisfies The desired properties 1) U S X is open, because intersection of finitely many open sets in X.

2) U contrains X. because each Uy does. 3) $U \times Y = N$ Given $(u, y) \in U \times Y$, we have $y \in Y = V_{A} \cup \dots \cup V_{A}$, so $y \in V_{Y}$ for some j Also, since $u \in U$, we have $u \in V_{Y}$. Hence $(u, y) \in U_{Y} \times V_{Y} = N$

Honce U satisfies The desired properties

Sketch:

