Name: _____

Student number: _____

Instructions

- Turn off all the electronic devices.
- This is a closed book exam.
- You are allowed a notesheet. You can use any fact in the notesheet, but you must reference which fact you are using.
- Unless otherwise stated, you must justify your answers.
- If you have a question, raise your hand and I will come to you.
- You have 50 minutes to complete the exam.
- Good luck!

Question:	1	2	3	4	Total
Points:	10	10	10	10	40
Score:					

~

1. (10 points) Let X be a topological space and A, B subsets of X. Determine which statements below are true, and which are false. (If your answer is True, you must prove it; if your answer is False, you must provide a counter example.)

(a)
$$(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$$

False. Let $X = \mathbb{R}$ with standard topology
Let $A = (0, 1]$ and $B = (1, 2)$
Then $A^{\circ} = (0, 1)$, $B^{\circ} = (1, 2)$, so $A^{\circ} \cup B^{\circ} = (0, 1) \cup (1, 2)$
On the other hand, $A \cup B = (0, 2)$, so
 $(A \cup B)^{\circ} = (0, 2)$.
Thus $A^{\circ}B^{\circ} \neq (A \cup B)^{\circ}$

(b)
$$\overline{A \cap B} = \overline{A} \cap \overline{B}$$
.
False. Let X, A and B as before.
Then $\overline{A} = [0, 1]$ and $\overline{B} = [1, 2]$
Hence $\overline{A} \cap \overline{B} = 41$?
On the other hand, $\overline{A} \cap \overline{B} = \emptyset$, so
 $\overline{A \cap B} = \emptyset$.
Thus $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

2. (10 points) Let (X, d_X) and (Y, d_Y) be metric spaces. And consider the set $Z = X \times Y$. Define a function $d_Z \colon Z \times Z \to \mathbb{R}$ by

$$d_{Z}((x,y), (x',y')) = d_{X}(x,x') + d_{Y}(y,y').$$

(a) Prove that d_Z is a metric on Z.

1) Symmetric: $d((x,y), (x',y')) = d_x(x,x') + d_y(y,y') = d_x(x',x) + d_y(y',y) = d_z((x',y'), (x,y))$

2) Non-degeneracy:

$$d_2(x,y), (x',y') = d_x(x,x') + d_y(y,y') \ge 0$$
 with equality if and only if
both $d_x(x,x') = 0$ and $d_y(y,y') = 0$, which happens it and only if
 $x = x'$ and $y = y'$, or in other words $(x,y) = (x',y')$.

3)
$$\Delta$$
-inequality:
 $d_{z}((x,y); (x'',y'')) = d_{x}(x,x'') + d_{y}(y,y'')$
 $\leq d_{x}(x,x') + d_{x}(x',x'') + d_{y}(y,y') + d_{y}(y',y'')$
 $= d_{z}((x,y), (x',y')) + d_{z}((x',y'), (x'',y''))$

T

0

(b) Let 7 be the topology on Z induced by the metric dz, and 5' be the product topology on
$$Z = X \times Y$$
. Show that $T = T'$.
Deccall: T has basis $B_d = \langle B(x,y), r \rangle \mid \langle x,y \rangle \in Z$, riss \uparrow
T' has basis $B_{prod} = \langle U \times V \le X \times Y \mid U$ open in X, V open in Y
 $\begin{bmatrix} T' \in T \end{bmatrix}$ IT's enough to show that The basis B_{prod} for T'
Soilisfies $B_{prod} \in T$. Fix $U \times V \in B_{prod} - Let (x,y) \in U \times V$
fix Ero such that $B_x(x,e) \in U$ and $B_y(x,e) \in V$, thus $B_x(x) \times B_y(x,e) \in U$.
Chain: $B_y(x,y), e) \in B_x(x,e) \times B_y(y,e)$
Indeed, if $d_y(x,y), e \in Them $d_x(x,y) \le d_y(x,y), e \in Thes}$
And also $d_y(y,y) \le d_y(x)$. These proves the chain.
Then, for each $(x,y) \in U \times V$. There exists $B_y(x,y), e \in T$
 $[T \subseteq T]$. Let $W \in T$ and $(x,y) \in W$. Then $\exists Ero$ such that
 $B_y((x,y), e) \le W$.
Chain: $B_x(x,e) \times B_y(y,e) \subset B_y((x,y), e) \le M$
Indeed, if $d_y(x,x) \le y \times B_y(y,e) \subset B_y((x,y), e) \le M$
Let $(x,y) \in B_y(x,y), e \in T$
 $[T \subseteq T]$. Let $W \in T$ and $(x,y) \in W$. Then $\exists Ero$ such that
 $B_y((x,y), e) \le W$.
Chain: $B_x(x,e) \times B_y(y,e) \subset B_y((x,y), e) \le M$
Indeed, if $d_y(x,x) \le \xi$ and $d_y(x,y) \le \xi$. Then
 $d_y((x,y), e) = g_y((x,x) + d_y(x,y) \le \xi + \xi = e)$
So $(x,y) \in B_y((x,y), e)$, which proves the chain.
As before, using the local description of $T' = T(B_{prod})$. This says
That $W \in T'$ as desired. Page 4$

3. (10 points) Let X be a topological space. Let $x \in X$ and let A be a subset of X.

4. (10 points) Let $\omega \notin \mathbb{R}$ and define $X = \mathbb{R} \cup \{\omega\}$. For each $x \in X$ and r > 0, define

$$A(x,r) = \begin{cases} \{y \in \mathbb{R} \mid |y-x| < r\}, & \text{if } x \in \mathbb{R} \\ \{y \in \mathbb{R} \mid |y| > r\} \cup \{\omega\}, & \text{if } x = \omega. \end{cases}$$

(a) Show that $\mathcal{A} = \{A(x, r) \mid x \in X, r > 0\}$ is a basis for a topology on X.

No need to verify:
1)
$$X = \bigcup_{A \in A} A$$
.
2) Given $A_{A,A_{2}} \in A$ and $x \in A_{A} \cap A_{2}$, there exists $A_{x} \in A$
with $x \in A_{x} \in A_{A} \cap A_{2}$.
1) is clear, because for any $x \in X$ we have $x \in A(x, 1)$.
2) Let $A(x, r)$ and $A(x', r')$ in A . Let $y \in A(x, r) \cap A(x', r')$.
In case $y = w$, Since $w \in A(x, r)$ we have $x = w$. Similarly, $x' = w$.
Thus, if we let $r'' = \max \{1, r''\}$, then $w \in A(w, r'') \in A(w, r) \cap A(w, r')$
i) In the other case, we have $y \in \mathbb{R}$. Since $A(x, r) \cap A(w, r')$
i) In the other case, we have $y \in \mathbb{R}$. Since $A(x, r) \cap A(w, r')$
whence, by definition of T_{Stot} . There is some $r'' \supset Such$ thet
 $(y - r'', y + r'') \in (A(x, r) \cap A(x', r))$, as desired.
Therefore A defines a basis for a topology on X

(b) Provide X with the topology generated by \mathcal{A} and let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that f extends to a continuous function g: $X \to \mathbb{R}$ if and only if $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ both exist in \mathbb{R} and are equal. for a function f: IR -TR, we define Recall: 1) lim f(x) = l_ ER => YEYO J ROO Such That if x > R Then |f(x)-l_) < E 2) $\lim_{X \to -\infty} f(x) = l_2 \in \mathbb{R} \iff \forall \mathcal{E} > \mathcal{F} \Rightarrow \mathcal{F} \Rightarrow$ (=) Assume (: IR -> IR is a continuous function that can be extended Continuously X -> IR. In other words, I q: X -> IR continuous Such That $g|_{\mathbb{D}} = f$. Let $l = g(w) \in \mathbb{R}$. We prove that lim f(x) and lim both exist and are equal to l Let E > 0. Since $(l - \varepsilon, l + \varepsilon) \in \mathbb{R}$ is open and $g: X \longrightarrow \mathbb{R}$ is continuous with g(w) = P, There exists a neighborhood A(w, R) of w in X such That $g(A(w, R)) \subseteq (l - \varepsilon, l + \varepsilon)$ Let $x \in \mathbb{R}$ with $x > \mathbb{R}$. Then $x \in A(w, \mathbb{R})$, so $f(x) = g(x) \in g(A(w, \mathbb{R})) \in (\mathbb{R} - \varepsilon, \mathbb{R} + \varepsilon)$, In other words, if x>R Then |f(x)-l < E This works $\forall e > 0$, so $\lim_{x \to \infty} \frac{1}{2}(x) = 0$ Similarly, given x e IR with x <-R, we have x e A(w, R), so again f(x) e (l-e, l+e) as before In other words, X <- R => |f(x)-l< E This works tero, so lim fix = P.

(b) Provide X with the topology generated by \mathcal{A} and let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that f extends to a continuous function $g: X \to \mathbb{R}$ if and only if $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ both exist in \mathbb{R} and are equal.

$$\iff) Assume (R \rightarrow R is continuous and \lim_{x \rightarrow \infty} f(x) = \lim_{x \rightarrow \infty} f(x) = l \in \mathbb{R}$$
Thus $H \in \mathcal{F}$ such that if $|x| > R$ then $|A(x) - l| < \epsilon$.

Define
$$g: X \to \mathbb{R}$$
 by $g(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ x = w \end{cases}$ We prove g continuous
Let $U \in \mathbb{R}$ open. With $g^{-1}(U)$ open in X . We consider two Cases
Case 1. $l \notin U$. Then $g^{-1}(U) = f^{-1}(U)$. Since f is continuous, $f^{-1}(U) \in \mathbb{R}$ is
Open. Hence $\forall x \in f^{-1}(U)$, \exists roo such that $B(x,t) = f^{-1}(U)$. But this just
says that $\forall x \in g^{-1}(U)$, \exists roo such that $A(x,t) \in g^{-1}(U)$.
Hence $g^{-1}(U)$ is open in X by the local description of the topology $\mathcal{T}(\mathcal{H})$.
Cases: $l \notin U$. Then $g^{-1}(U) = f^{-1}(U) \cup J_W \rbrace$. We show $g^{-1}(U) \in X$ is open using the local
description of $T(\mathcal{H})$. Let $x \in g^{-1}(U)$. If $x \in f^{-1}(U)$, as the the previous case, \exists roo such
that $A(x,t) \in g^{-1}(U)$. Assume thus $x = w$. Since $l \in U$ and $U \in \mathbb{R}$ is open,
 $\exists E > 0$ such that $|x| \Rightarrow \mathbb{R} \Rightarrow |f(x) = \ell = \ell(x) = f(x)$.
First $A(x,t) = g^{-1}(U)$. And $f(x) = \ell = \ell(x) = \ell(x)$.
 $\exists R \to 0$ such that $|x| \Rightarrow \mathbb{R} \Rightarrow |g(x) = f^{-1}(x) \in (l \in l + \varepsilon) \le U$.
Since also $g(w) \in [l - \varepsilon, l + \varepsilon]$, This means that $A(w, \mathbb{R}) = g^{-1}(U)$.

In any case, g'(u) is open. Hence g is continuous.