\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=1cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem} \setlist{itemsep=0.5em} \usepackage{xcolor} \definecolor{forestgreen}{rgb}{0.13, 0.55, 0.13} \usepackage[colorlinks = true, linkcolor = forestgreen, urlcolor = forestgreen, citecolor = forestgreen, anchorcolor = forestgreen]{hyperref} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{tikz} \usepackage{mathabx} \usepackage{lastpage} %% header, footer definitions \def\course{MATH 314} \def\courselink{https://www.gsanmarco.com/graph-theory} \def\assignment{HW \#11} \def\assignlink{hw11.tex} \def\due{Due on April 18} \pagestyle{fancy} \fancyhead[L]{\course} \fancyhead[C]{\assignment} \fancyhead[R]{\due} %\renewcommand{\footrulewidth}{0.4pt} %\fancyfoot{} %\fancyfoot[R]{\fontsize{8}{10} \selectfont Page \thepage~of \pageref{LastPage}} %\fancyfoot[L]{\fontsize{10}{12} \selectfont Source file available at \href{\courselink}{\textbf{\courselink}}} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} \newtheorem{Solution}{Solution} % custom \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} \DeclareMathOperator{\diam}{diam} \newcommand*{\abs}[1]{\lvert #1\rvert} \begin{document} \noindent Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem. \vskip10pt \begin{problem}[2pts] Let $G$ be any graph. Prove that \[ \abs{E(G)}\geq{\chi(G)\choose 2}. \] \end{problem} \begin{problem}[1pt] Let $G=(V,E)$ be any graph and consider a (not necessarily proper) edge-coloring $f\colon E\to\{\text{red},\text{blue}\}$). Let $G_r$ and be the graph formed by the red edges and let $G_b$ be the graph formed by the blue edges (formally, $G_r=\bigl(V,f^{-1}(\text{red})\bigr)$ and $G_b=\bigl(V,f^{-1}(\text{blue})\bigr)$). Prove that \[ \chi(G_r)\cdot\chi(G_b)\geq\chi(G). \] Hint: this generalizes the theorem $\chi(G) \cdot \chi (\overline G) \geq \abs{V(G)}$ from Lecture 20. \end{problem} \begin{problem}[1pt] For every pair of positive integers $m,n$, construct a graph $G$ with the following properties: \begin{itemize} \item $\abs{V(G)} = m\cdot n$, and \item $\chi(G)=m$, and \item $\chi(\overline G)=n$. \end{itemize} Note: this shows that the equality can be achieved in $\chi(G) \cdot \chi (\overline G) \geq \abs{V(G)}$. \end{problem} \begin{problem}[2pts] Prove that $G$ is $3$-critical if and only if $G\cong C_{2n+1}$ for some positive integer $n$. \end{problem} \begin{problem}[0.5 + 1.5 pts]Recall that, for a graph $G$ with $V(G)=\{v_1, \dots, v_n\}$, the \textbf{Mycielski graph} $\mu(G)$ is obtained from $G$ by adding: \begin{enumerate}[label=(\arabic*)] \item \emph{shadow vertices} $\{u_1, \dots, u_n\}$ and edges $u_iv_j \in E(\mu(G))$ if $v_iv_j\in E(G)$, \item a vertex $w$ and edges $wu_i$ for all shadow vertices $u_i$. \end{enumerate} Show that: \begin{enumerate}[label=(\alph*)] \item If $G$ is triangle-free, then $\mu(G)$ is triangle free. \item $\chi(\mu(G))=\chi(G)+1$. \end{enumerate} \end{problem} \begin{problem}[2pts] Let $T$ be any tree on $t$ vertices, let $G$ be any graph on $n$ vertices and let $m$ be a positive integer. Show that if $n\geq (t-1)(m-1) + 1$, then either $G$ contains a copy of $T$ or $\overline G$ contains a copy of $K_m$ (or both). \end{problem} \end{document}