Last week:

- Degree sequences.
- Graphical sequences, Havel–Hakimi theorem, Erdös–Gallai (one direction).
- Adjacency matrix (how to store a graph).
- Graph isomorphisms and automorphisms.

This week:

- Trees.
- More trees.
- Spanning trees.

Definition. An edge e of a graph G is a bridge if G - e has more components than G.

• In case **G** is connected, *e* is a bridge if and only if G - e is disconnected.

Example. *Identify edges in the following graph.*

Theorem (4.1). An edge e of a graph G is a bridge if and only if e lies on no cycle of G. Assume
$$e = uv$$

(i) Suppose uv lies on no $cycle$.
Claim: There are no uv paths in G-e. Assume $P = (u = v_0, \dots, v_n = v)$
is a $u - v$ path in G-e
Then $(u = v_0, v_1 - \dots, v_n = v_1, u)$ is a cycle on G.
Thus u, v lie in different components of G-e.
Since any path in G-e is a path in G, we have more components
in G-e Than in G.
(ii) Assume $e = uv$ is a bridge Thismeans: $\exists x_1 \neq e V(G)$ for which
There is a path in G, but no path on G-e.
Thus any $x - y$ path on G uses e. Wlog such a path uses u first
and Then v .
 $P = (x = w_0, w_1, \dots, w_k = u, w_{k+1} = v, w_{k+2}, \dots, w_m = z)$.
Notes available at https://www.gaalmarcocom/graph-theory

- A tree is a **double star** if it has exactly two vertices that are not leaves.
- A tree on at least 3 vertices is a caterpillar if removing all leaves results in a path. That path is the spine.

Example (Forests, (double) stars, caterpillars).

Theorem (Not in the book). Let G be a graph. If there are $x, y \in V(G)$ connected by at least two paths, then G contains a cycle.

Proof. Consider two different x–y paths $(x = u_0, u_1, ..., u_k = y)$ and $(x = v_0, v_1, ..., v_{\ell} = y)$, say with $k \leq \ell$.

Step 1: Let i denote the largest index for which $u_j = v_j$ for all $j \in \{0, ..., i\}$. Then i < k.

There is such s (namely s=k)

Step 3: Let $t \in \{i + 1, \dots, \ell\}$ such that $u_s = v_t$. Then $s \neq i + 1$ or $t \neq i + 1$.

$$T f s = i + 1 = t \quad \cup_{i+1} = \cup_{s} = \vee_{s} = \vee_{i+1} \quad Contradicts \tau.$$

Step 4: $(v_i = u_i, u_{i+1}, ..., u_s = v_t, v_{t-1}, ..., v_{i+1})$ is a cycle in G.

Notes available at https://www.gsanmarco.com/graph-theory

Theorem (4.2). A graph G is a tree if and only if every two vertices of G are connected by a unique path.

$$\Rightarrow) Assume G is a Tree. Take u, v \in V(G). Since G is connected
it contains a U-v path. If use have two U-v paths
Then use can build a Q cle (using previous time) on G.
(=) WTS \bigcirc G connected (can connect any two vertices)
 $G contains no croles.$
If $C = (U = v_0 = v_1 ..., v_n = v_1, u)$ is a Cycle
Then $(U = v_0, ..., v_n = v)$ different u-values
 $(v_1, v_1, ..., v_{n-1}, (u_1v))$$$

Theorem (4.3). Every nontrivial tree has at least two leaves.

Note: If T is a tree on n vertices and v is a leaf, then T - v is a tree with n - 1 vertices.

> degv=1

Theorem (4.4). If T is a tree, then
$$|E(T)| = |V(\overline{\bullet})| - 1$$
. (A tree on n vertices has exactly $n - 1$ edges.)
Proof: By induction on $n = |V(T)|$ The case $n = 1$ only contains
The Tree • Which has O edges
Assume True for trees on $n - 1$ vertices.
Take T tree on n vertices. Take a leaf $v \in T(4.3)$
Then $T - V$ is a tree on $n - 1$ vertices
 $IE(T + V)| = |V(T - V)| - 1$ (TA)
 $IE(T)| - 1$ $V(T)| - 1$
 $IE(T)| = |V(T)| - 1$

Corollary (4.6). *If a forest has exactly* n *vertices and* k *components, then it has* n - k *edges.*

Exercise. Show that every tree is bipartite.

Exercise. Prove that a graph G is a tree if and only if G contains no cycle but G + uv does contain a cycle for each pair of non-adjacent vertices u, v in G.

Exercise. Let T be a tree. For each $i \ge 1$, let n_i denote the number of vertices of degree i. Show that

$$n_1 = 2 + n_3 + 2n_4 + 3n_5 + 4n_6 + \dots$$