
4.1 (Bridges) & 4.2 (Trees) Lecture 07

Last week:

‚ Degree sequences.

‚ Graphical sequences, Havel–Hakimi theorem, Erdös–Gallai (one direction).

‚ Adjacency matrix (how to store a graph).

‚ Graph isomorphisms and automorphisms.

This week:

‚ Trees.

‚ More trees.

‚ Spanning trees.
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Definition. An edge e of a graph G is a bridge if G ´ e has more components than G.

‚ In case G is connected, e is a bridge if and only if G ´ e is disconnected.

Example. Identify edges in the following graph.

Exercise. (a) If e “ uv is a bridge in G, then u, v lie in different components of G ´ e.

(b) If e “ uv is a bridge in G, then there is a unique u–v path in G.
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Theorem (4.1). An edge e of a graph G is a bridge if and only if e lies on no cycle of G.
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Definition. A tree is a connected graph with no cycles.

Example (All trees on 4 vertices).

‚ A forest is a graph with no cycles.

‚ A tree is a star if it has exactly one vertex that is not a leaf.

‚ A tree is a double star if it has exactly two vertices that are not leaves.

‚ A tree on at least 3 vertices is a caterpillar if removing all leaves results in a path. That path is the spine.

Example (Forests, (double) stars, caterpillars).
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Theorem (Not in the book). Let G be a graph. If there are x,y P VpGq connected by at least two paths, then G
contains a cycle.

Proof. Consider two different x–y paths px “ u0,u1, . . . ,uk “ yq and px “ v0, v1, . . . , v` “ yq, say with k § `.

Step 1: Let i denote the largest index for which uj “ vj for all j P t0, . . . , iu. Then i † k.

Step 2: There is a smallest s P ti ` 1, . . . ,ku for which us P tvi`1, . . . , v`u.

Step 3: Let t P ti ` 1, . . . , `u such that us “ vt. Then s ‰ i ` 1 or t ‰ i ` 1.

Step 4: pvi “ ui,ui`1, . . . ,us “ vt, vt´1, . . . vi`1q is a cycle in G.
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Theorem (4.2). A graph G is a tree if and only if every two vertices of G are connected by a unique path.
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Theorem (4.3). Every nontrivial tree has at least two leaves.

Note: If T is a tree on n vertices and v is a leaf, then T ´ v is a tree with n ´ 1 vertices.
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Theorem (4.4). If T is a tree, then |EpTq| “ |VpGq| ´ 1. (A tree on n vertices has exactly n ´ 1 edges.)
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Corollary (4.6). If a forest has exactly n vertices and k components, then it has n ´ k edges.

Exercise. Show that every tree is bipartite.

Exercise. Prove that a graph G is a tree if and only if G contains no cycle but G ` uv does contain a cycle for each pair
of non-adjacent vertices u, v in G.

Exercise. Let T be a tree. For each i • 1, let ni denote the number of vertices of degree i. Show that

n1 “ 2 ` n3 ` 2n4 ` 3n5 ` 4n6 ` . . .
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