4.1 (Bridges) & 4.2 (Trees) Lecture 07

Last week:
o Degree sequences.
o Graphical sequences, Havel-Hakimi theorem, Erdds—Gallai (one direction).
e Adjacency matrix (how to store a graph).
e Graph isomorphisms and automorphisms.
This week:
o Trees.
e More trees.

e Spanning trees.
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Definition. An edge e of a graph G is a bridge if G — e has more components than G.

e In case G is connected, e is a bridge if and only if G — e is disconnected.
o
Example. Identify edges in the following graph. ¢
v /
: vz YG V“ v /
'\ .\ / | ¥ :
N % | = N
v, v
Va vy Va Vo ey
Exercise. (a) If e = uvisa bridge in G, then u, v lie in different components of G — e.

LeT G4 denoTe The Compduwawt of G ao«Tc(W\‘vxﬁ O\V.

U,V belong To digfefent commvenTs ¢ 6,’\@_
A€ Thee s o -V PaTh I Ghe - - XV\V Xy m G e Qye Covmecied

(b) If e = uvis a bridge in G, then there is a unique u—v path in G.
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Theorem (4.1). An edge e of a graph G is a bridge if and only if e lies on no cycle of G. ASSUV»Q e=uv
L’;> 50‘[’?032— UV hesS on o C>7 Cle .
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Definition. A tree is a connected graph with no cycles. lequ—_ veV / dﬁ Y="1.
Example (All trees on 4 vertices).
°
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o A forest is a graph with no cycles. )

e A tree is a star if it has exactly one vertex that is not a leaf.
o A tree is a double star if it has exactly two vertices that are not leaves.
e A tree on at least 3 vertices is a caterpillar if removing all leaves results in a path. That path is the spine.

Example (Forests, (double) stars, caterpillars).

T 9< ATKRTY
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Theorem (Not in the book). Let G be a graph. If there are x,y € V(G) connected by at least two paths, then G
contains a cycle.

Proof. Consider two different x—y paths (x = up, us,..., ux =y) and (x = vo,vy,..., v, = y), say withk < £.

Step 1: Let i denote the largest index for which u; = v; for all j € {0,...,1i}. Theni < k.

Ny k<o V=Ue = Vi | V=V wTu KFQ | coutmd,

Step 2: There is a smallest s € {i + 1,..., k} for which us € {viy1,...,v¢}.

There is stan S (nenely, sS=<) —

Step 3: Lette {i+1,...,0} suchthatus =v;. Thens #i+Tort#1i+1.

Te s=t1 =1 Uiy) = == Y41 ConlTrad) e's <

Step 4: (Vi = Wi, Wis1,..., Us = V¢, V¢_1,...Vi41) is a cycle in G. O

1
Notes available at https://www.gsanmarco.com/graph-theory Page 5 of 9



4.1 (Bridges) & 4.2 (Trees) Lecture 07

Theorem (4.2). A graph G is a tree if and only if every two vertices of G are connected by a unique path.
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(_’;> WTS — & comecTed L/(Ccm COneeT Qus, Twd ue(‘T;‘ceSJ
> G covfeimnsis crale.

EP C:CU:VQ:V,,___,VV\:V,u)iS < Cyd,e,

Then (U=u,. _, y =y Decoranr

e ", \ Fﬂ@h{ UN?QT\«S

V. \
., [ (U;V)

/ A i\’“\—w
i =

Notes available at https://www.gsanmarco.com/graph-theory Page 6 of 9




4.1 (Bridges) & 4.2 (Trees) Lecture 07

Theorem (4.3). Every nontrivial tree has at least two leaves./—_> ﬂ% V=1
Note: If T is a tree on n vertices and v is a leaf, then T — v is a tree with n — 1 vertices.
LyT-v as V-1 vecrices o
>T-v s conmeded (b, vse coejvzo
>T-v Conlains we ayde c—
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

—

Theorem (4.4). If T is a tree, then |E(T)| = |V(@)| — 1. (A tree on n vertices has exactly n — 1 edges.)

'PVOQQL@Y mduciion onw n= IV(T)I TWhe case =21 only ConTams
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4.1 (Bridges) & 4.2 (Trees) Lecture 07

Corollary (4.6). If a forest has exactly n vertices and k components, then it has n — k edges.

Exercise. Show that every tree is bipartite.

Exercise. Prove that a graph G is a tree if and only if G contains no cycle but G + wv does contain a cycle for each pair
of non-adjacent vertices u,v in G.

Exercise. Let T be a tree. For each i > 1, let n; denote the number of vertices of degree i. Show that

ny=2+n3+2ng +3ns +4ng +...
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