Last week:

- Vertex coloring
- Chromatic numbers
- Critical graphs
- Chromatic numbers and trees

This week:

- Edge coloring
- · Factorization · Edge courting

Definition. *Let* G *be a graph.*

- An *edge-coloring* of G is a function $f: E(G) \rightarrow C$ where C is a non-empty set.
- Such edge-coloring is **proper** if $f(e) \neq f(s)$ whenever $e, s \in E(G)$ share a common vertex.
- For an integer $t \ge 1$, a t-edge-coloring of G is a proper coloring $f: E(G) \rightarrow C$ such that $|C| \le t$.
- The edge-chromatic number $\chi'(G)$ is the smallest integer t such that G has a proper t-edge-coloring. $A \cdot \chi \cdot \alpha$ Chromert's index, Example.

Quick observations:

(a) If G is an n-vertex graph, then $\chi'(G) \leq \binom{n}{2}$. $|E(G)| \leq \binom{N}{2}$, just use a color for each edge.

(b) $\chi'(G) = 0$ if and only if G has no edges. $\chi'(G) = 0 \implies mo e dg es$ $mo e dg es \implies \chi'(G) = 0$

(c) If H is a subgraph of G, then $\chi'(H) \leq \chi'(G)$. Any edge-coloring for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. <u>Any edge-coloring</u> for G restricts Toch edge coloring for H. **Proposition.** Proper edge-colorings of G using t-colors correspond to partitions of E(G) into t matchings. In particular, $\chi'(G)$ is the smallest integer for which we can partition E(G) into t matchings.

Proof: Let
$$f: E(G) \longrightarrow C = \langle G , ..., C_t \rangle$$
 proper edge coloning.
Let $M_i = f^{-1}(G_i) = \zeta e \in E(G) = f(e) = G_i \zeta$
Then $E(G) = M_1 \sqcup M_2 \amalg_{--} \sqcup M_t$
and each M_i is a matching in G: if we have ease M_i .
Then $f(e) = f(S)$, hence e, s are vertex-disjoint.
Conversily: if $E(G) = M_1 \amalg_{--} \amalg M_t$, all M_i 's matchings.
Define $f: E(G) \longrightarrow \zeta_{1--} I_i$ by $f(e) = i$ if $e \in M_i$
This is a proper coloring, because M_i 's are matchings.
Define M_i is a proper coloring.

10.3 (Edge coloring)

(Lower Lounds)

Lecture 21

Theorem. *For any graph* G *we have*

$$\begin{aligned} & \chi'(G) \geq \Delta(G), \quad \text{and} \quad \chi'(G) \geq \begin{bmatrix} E(G) \\ a'(G) & \dots Edge - independence \\ (Size of lorgezt matching) \\ (Size of lorgezt matchi$$

Notes available at https://www.gsanmarco.com/graph-theory

10.3 (Edge coloring)

Definition. For a graph G = (V, E), the *line graph* L(G) has vertex set E and edges $\{e_s : e \neq s \in E, e \cap s \neq \emptyset\}$

In other words, for each edge of G we have a vertex in L(G), and for two edges in G with a common vertex, we have an edge in L(G) between the corresponding vertices.

Example.

Exercise. (a) Show that $L(C_n) \simeq C_n$ for any $n \ge 3$.

(b) Show that $L(P_n) \simeq P_{n-1}$ for any $n \ge 2$.

(c) For $uv \in E$, show that $N_{L(G)}(uv) = \{uw : w \in N_G(u) \setminus \{v\}\} \sqcup \{wv : w \in N_G(v) \setminus \{u\}\}.$

(d) For $uv \in E$, show that $\deg_{L(G)} uv = \deg_{G} u + \deg_{G} v - 2$.

Theorem. If G is a graph with at least one edge, then $\chi'(G) \leq 2\Delta(G) - 1$.

Proof Exercise:
$$\chi'(G) = \chi(L(G))$$

By Thum 10.9 (applied To $L(G)$) $\chi(L(G)) \leq \Lambda(L(G)) + 1$. Then
 $\chi'(G) = \chi(L(G)) \leq 1 + \Lambda(L(G))$
 $= 1 + \max \zeta \deg_{L(G)} \cup \zeta$
 $= 1 + \max \zeta \deg_{G} \cup + \deg_{G} \vee -2\zeta$
 $\cup \forall \in E(G)$
 $\leq 1 + 2\Lambda(G) -2 = 2\Lambda(G) - 1$.
 $\Lambda(G) \leq \chi'(G) = 2\Lambda(G) - 1$

Theorem (Vizing's Theorem, 10.12). If G is any graph, then $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$. i.e: $\chi'(G) \longrightarrow \Lambda(G)$ $\longrightarrow \Lambda(G) + 1$ **Theorem.** For any integer $n \ge 2$, we have $\chi'(K_n) = \begin{cases} n-1, & \text{if } n \text{ is even} \\ n, & \text{if } n \text{ is odd} \end{cases}$ $\lambda(K_n)=n-1$ $\chi'(K_n) \ge \begin{cases} n-1, n even \\ n, n even \end{cases}$ We know $\chi'(K_n) \ge \Lambda(K_n) = n-1$ for any n Proof If n is odd, $\alpha'(K_n) = \frac{n-1}{2}$. Thus $\chi'(K_n) \geq \frac{|E(K_n)|}{\alpha'(K_n)} = \frac{\binom{n}{2}}{\frac{n-1}{2}} = \frac{\binom{n}{(m-1)}}{\frac{n-1}{2}}$ $\chi'(K_n) \leq \int_{n}^{n-1}$, neven Note: enough To show: $\chi'(K_n) \leq \int_{n}^{n-1}$, nodd $\chi'(K_n) \leq n-7$ for neven. We would have odd n, $\chi'(K_n) \leq \chi'(K_{n+1}) \leq N+1 - 1 = N$

Now we show
$$\chi'(k_n) \leq n-1 \equiv K$$
 for neven
Moreover, we will show
 $E(k_n) = M_0 \sqcup M_1 \amalg \dots \sqcup M_{k-1}$ where each Mills perfect
Matching
Label $V(k_n) = \zeta c \zeta \sqcup \zeta \upsilon_0, \dots, \upsilon_{k-1} \zeta$
For each $0 \leq l \leq k-1$, define
 $M_i = 4 \operatorname{Cvi} \zeta \amalg \zeta \lor_{i+x} \lor_{l-x} : \times 641, \dots, \underbrace{k-1} \zeta$ Anithmetic
 $\operatorname{Mod} k$
Edea: Forma regular k-gon with $v_{01} \dots v_{k-1}$, put cin the
center of the K-gon
For Mill add edge cvi to Mill then, edd all edges
perpendicular to cvi
Example: $n = 6$ $M_0 = \zeta \operatorname{Cvo} \zeta \amalg \zeta \lor_{0+1} \lor_{0-1} \lor_{0+2} \lor_{0-2} \zeta$
 $K=5$ $= 4 \operatorname{Cvo} \zeta \amalg \zeta \lor_1 \lor_0$

Example: n=6

Then each Mi is a perfect matching, and $E(K_n) = M_0 \sqcup \dots \sqcup M_{K-1}$ (K Terms) Thus by prop, $\chi'(K_n) \leq K \equiv n-1$ Next: Examples OF $\chi'(G) = J(G)$

 $\chi'(G) = \lambda(G) + 1$

Tool: factorization.